
OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 1 Naveen kumar Arem,Asst Professor

UNIT-I

The programming paradigm is the way of writing computer programs. There are four

programming paradigms and they are as follows.

 Monolithic programming paradigm

 Structured-oriented programming paradigm

 Procedural-oriented programming paradigm

 Object-oriented programming paradigm

Monolithic Programming Paradigm

The Monolithic programming paradigm is the oldest. It has the following characteristics. It is

also known as the imperative programming paradigm.

 In this programming paradigm, the whole program is written in a single block.

 We use the goto statement to jump from one statement to another statement.

 It uses all data as global data which leads to data insecurity.

 There are no flow control statements like if, switch, for, and while statements in this

paradigm.

 There is no concept of data types.

An example of a Monolithic programming paradigm is Assembly language.

Structure-oriented Programming Paradigm

The Structure-oriented programming paradigm is the advanced paradigm of the monolithic

paradigm. It has the following characteristics.

 This paradigm introduces a modular programming concept where a larger program is

divided into smaller modules.

 It provides the concept of code reusability.

 It is introduced with the concept of data types.

 It also provides flow control statements that provide more control to the user.

 In this paradigm, all the data is used as global data which leads to data insecurity.

Examples of a structured-oriented programming paradigm is ALGOL, Pascal, PL/I and Ada.

Procedure-oriented Programming Paradigm

The procedure-oriented programming paradigm is the advanced paradigm of a structure-oriented

paradigm. It has the following characteristics.

 This paradigm introduces a modular programming concept where a larger program is

divided into smaller modules.

 It provides the concept of code reusability.

 It is introduced with the concept of data types.

 It also provides flow control statements that provide more control to the user.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 2 Naveen kumar Arem,Asst Professor

 It follows all the concepts of structure-oriented programming paradigm but the data is
defined as global data, and also local data to the individual modules.

 In this paradigm, functions may transform data from one form to another.

Examples of procedure-oriented programming paradigm is C, visual basic, FORTRAN, etc.

Object-oriented Programming Paradigm

The object-oriented programming paradigm is the most popular. It has the following

characteristics.

 In this paradigm, the whole program is created on the concept of objects.

 In this paradigm, objects may communicate with each other through function.

 This paradigm mainly focuses on data rather than functionality.

 In this paradigm, programs are divided into what are known as objects.

 It follows the bottom-up flow of execution.

 It introduces concepts like data abstraction, inheritance, and overloading of functions and

operators overloading.

 In this paradigm, data is hidden and cannot be accessed by an external function.

 It has the concept of friend functions and virtual functions.

 In this paradigm, everything belongs to objects.

Examples of procedure-oriented programming paradigm is C++, Java, C#, Python, etc

C++ OOPs Concepts

The major purpose of C++ programming is to introduce the concept of object orientation to the C

programming language.

Object Oriented Programming is a paradigm that provides many concepts such as inheritance,

data binding, polymorphism etc.

The programming paradigm where everything is represented as an object is known as truly

object-oriented programming language. Smalltalk is considered as the first truly object-oriented

programming language.

OOPs (Object Oriented Programming System)

Object means a real word entity such as pen, chair, table etc. Object-Oriented Programming is

a methodology or paradigm to design a program using classes and objects. It simplifies the

software development and maintenance by providing some concepts:

o Object

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 3 Naveen kumar Arem,Asst Professor

o Class

o Inheritance

o Polymorphism

o Abstraction

o Encapsulation

Object

Any entity that has state and behavior is known as an object. For example: chair, pen, table,

keyboard, bike etc. It can be physical and logical.

Class

Collection of objects is called class. It is a logical entity.

Inheritance

When one object acquires all the properties and behaviours of parent object i.e. known as
inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

One of the most important concepts in object-oriented programming is that of inheritance.

Inheritance allows us to define a class in terms of another class, which makes it easier to create

and maintain an application. This also provides an opportunity to reuse the code functionality

and fast implementation time.

When creating a class, instead of writing completely new data members and member functions,

the programmer can designate that the new class should inherit the members of an existing class.

This existing class is called the base class, and the new class is referred to as the derived class.

The idea of inheritance implements the is a relationship. For example, mammal IS-A animal, dog

IS-A mammal hence dog IS-A animal as well and so on.

Base and Derived Classes

A class can be derived from more than one classes, which means it can inherit data and functions

from multiple base classes. To define a derived class, we use a class derivation list to specify the
base class(es). A class derivation list names one or more base classes and has the form −

class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and base-class is the name of a

previously defined class. If the access-specifier is not used, then it is private by default.

Consider a base class Shape and its derived class Rectangle as follows −

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 4 Naveen kumar Arem,Asst Professor

#include <iostream>

using namespace std;

// Base class

class Shape {

public:

void setWidth(int w) {

width = w;

}
void setHeight(int h) {

height = h;

}

protected:

int width;

int height;

};

// Derived class

class Rectangle: public Shape {

public:

int getArea() {

return (width * height);

}

};

int main(void) {

Rectangle Rect;

Rect.setWidth(5);

Rect.setHeight(7);

// Print the area of the object.

cout << "Total area: " << Rect.getArea() << endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Total area: 35

Access Control and Inheritance

A derived class can access all the non-private members of its base class. Thus base-class

members that should not be accessible to the member functions of derived classes should be

declared private in the base class.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 5 Naveen kumar Arem,Asst Professor

We can summarize the different access types according to - who can access them in the
following way −

Access public protected private

Same class yes yes yes

Derived classes yes yes no

Outside classes yes no no

A derived class inherits all base class methods with the following exceptions −

 Constructors, destructors and copy constructors of the base class.

 Overloaded operators of the base class.

 The friend functions of the base class.

Type of Inheritance

When deriving a class from a base class, the base class may be inherited through public,

protected or private inheritance. The type of inheritance is specified by the access-specifier as

explained above.

We hardly use protected or private inheritance, but public inheritance is commonly used.
While using different type of inheritance, following rules are applied −

 Public Inheritance − When deriving a class from a public base class, public members of

the base class become public members of the derived class and protected members of the

base class become protected members of the derived class. A base

class's private members are never accessible directly from a derived class, but can be

accessed through calls to the public and protected members of the base class.

 Protected Inheritance − When deriving from a protected base

class, public and protected members of the base class become protected members of the

derived class.

 Private Inheritance − When deriving from a private base

class, public and protected members of the base class become private members of the

derived class.

Multiple Inheritance

A C++ class can inherit members from more than one class and here is the extended syntax −

class derived-class: access baseA, access baseB....

Where access is one of public, protected, or private and would be given for every base class
and they will be separated by comma as shown above. Let us try the following example −

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 6 Naveen kumar Arem,Asst Professor

#include <iostream>

using namespace std;

area = Rect.getArea();

// Print the area of the object.

// Base class Shape

class Shape {

public:
void setWidth(int w) {

width = w;

}

void setHeight(int h) {

height = h;

}

protected:
int width;

int height;

};

// Base class PaintCost

class PaintCost {

public:

int getCost(int area) {

return area * 70;

}

};

// Derived class

class Rectangle: public Shape, public PaintCost {

public:

int getArea() {

return (width * height);

}

};

int main(void) {

Rectangle Rect;

int area;

Rect.setWidth(5);

Rect.setHeight(7);

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 7 Naveen kumar Arem,Asst Professor

cout << "Total area: " << Rect.getArea() << endl;

// Print the total cost of painting

cout << "Total paint cost: $" << Rect.getCost(area) << endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Total area: 35

Total paint cost: $2450

Polymorphism

When one task is performed by different ways i.e. known as polymorphism. For example: to

convince the customer differently, to draw something e.g. shape or rectangle etc.

In C++, we use Function overloading and Function overriding to achieve polymorphism.

The word polymorphism means having many forms. Typically, polymorphism occurs when

there is a hierarchy of classes and they are related by inheritance.

C++ polymorphism means that a call to a member function will cause a different function to be
executed depending on the type of object that invokes the function.

Consider the following example where a base class has been derived by other two classes −

#include <iostream>

using namespace std;

class Shape {

protected:

int width, height;

public:

Shape(int a = 0, int b = 0){

width = a;

height = b;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 8 Naveen kumar Arem,Asst Professor

int area() {

cout << "Parent class area :" << width * height << endl;

return width * height;

}

};

class Rectangle: public Shape {

public:

Rectangle(int a = 0, int b = 0):Shape(a, b) { }

int area () {

cout << "Rectangle class area :" << width * height << endl;

return (width * height);

}

};

class Triangle: public Shape {

public:

Triangle(int a = 0, int b = 0):Shape(a, b) { }

int area () {

cout << "Triangle class area :" << (width * height)/2 << endl;

return (width * height / 2);

}

};

// Main function for the program

int main() {

Shape *shape;

Rectangle rec(10,7);

Triangle tri(10,5);

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 9 Naveen kumar Arem,Asst Professor

When the above code is compiled and executed, it produces the following result −

Parent class area :70

Parent class area :50

The reason for the incorrect output is that the call of the function area() is being set once by the

compiler as the version defined in the base class. This is called static resolution of the function

call, or static linkage - the function call is fixed before the program is executed. This is also

sometimes called early binding because the area() function is set during the compilation of the

program.

But now, let's make a slight modification in our program and precede the declaration of area() in

the Shape class with the keyword virtual so that it looks like this −

#include <iostream>

using namespace std;

class Shape {

protected:

int width, height;

public:

Shape(int a = 0, int b = 0){

width = a;

height = b;

}

virtual int area() {

cout << "Parent class area :" << width * height << endl;

// store the address of Rectangle

shape = &rec;

// call rectangle area.

shape->area();

// store the address of Triangle

shape = &tri;

// call triangle area.

shape->area();

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 10 Naveen kumar Arem,Asst Professor

return width * height;

}

};

class Rectangle: public Shape {

public:

Rectangle(int a = 0, int b = 0):Shape(a, b) { }

int area () {

cout << "Rectangle class area :" << width * height << endl;

return (width * height);

}

};

class Triangle: public Shape {

public:

Triangle(int a = 0, int b = 0):Shape(a, b) { }

int area () {

cout << "Triangle class area :" << (width * height)/2 << endl;

return (width * height / 2);

}

};

// Main function for the program

int main() {

Shape *shape;

Rectangle rec(10,7);

Triangle tri(10,5);

// store the address of Rectangle

shape = &rec;

// call rectangle area.

shape->area();

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 11 Naveen kumar Arem,Asst Professor

After this slight modification, when the previous example code is compiled and executed, it

produces the following result −

Rectangle class area :70
Triangle class area :25

This time, the compiler looks at the contents of the pointer instead of it's type. Hence, since

addresses of objects of tri and rec classes are stored in *shape the respective area() function is

called.

As you can see, each of the child classes has a separate implementation for the function area().

This is how polymorphism is generally used. You have different classes with a function of the

same name, and even the same parameters, but with different implementations.

Abstraction:

Data abstraction refers to providing only essential information to the outside world and hiding
their background details, i.e., to represent the needed information in program without presenting

the details.

Data abstraction is a programming (and design) technique that relies on the separation of

interface and implementation.

Let's take one real life example of a TV, which you can turn on and off, change the channel,

adjust the volume, and add external components such as speakers, VCRs, and DVD players,

BUT you do not know its internal details, that is, you do not know how it receives signals over

the air or through a cable, how it translates them, and finally displays them on the screen.

Thus, we can say a television clearly separates its internal implementation from its external

interface and you can play with its interfaces like the power button, channel changer, and volume

control without having any knowledge of its internals.

In C++, classes provides great level of data abstraction. They provide sufficient public methods

to the outside world to play with the functionality of the object and to manipulate object data,

i.e., state without actually knowing how class has been implemented internally.

For example, your program can make a call to the sort() function without knowing what

algorithm the function actually uses to sort the given values. In fact, the underlying

implementation of the sorting functionality could change between releases of the library, and as

long as the interface stays the same, your function call will still work.

// store the address of Triangle

shape = &tri;

// call triangle area.

shape->area();

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 12 Naveen kumar Arem,Asst Professor

In C++, we use classes to define our own abstract data types (ADT). You can use the cout object
of class ostream to stream data to standard output like this −

#include <iostream>

using namespace std;

int main() {

cout << "Hello C++" <<endl;
return 0;

}

Here, you don't need to understand how cout displays the text on the user's screen. You need to

only know the public interface and the underlying implementation of ‘cout’ is free to change.

Access Labels Enforce Abstraction

In C++, we use access labels to define the abstract interface to the class. A class may contain

zero or more access labels −

 Members defined with a public label are accessible to all parts of the program. The data-

abstraction view of a type is defined by its public members.

 Members defined with a private label are not accessible to code that uses the class. The

private sections hide the implementation from code that uses the type.

There are no restrictions on how often an access label may appear. Each access label specifies

the access level of the succeeding member definitions. The specified access level remains in

effect until the next access label is encountered or the closing right brace of the class body is

seen.

Benefits of Data Abstraction

Data abstraction provides two important advantages −

 Class internals are protected from inadvertent user-level errors, which might corrupt the

state of the object.

 The class implementation may evolve over time in response to changing requirements or

bug reports without requiring change in user-level code.

By defining data members only in the private section of the class, the class author is free to make

changes in the data. If the implementation changes, only the class code needs to be examined to

see what affect the change may have. If data is public, then any function that directly access the

data members of the old representation might be broken.

Data Abstraction Example

Any C++ program where you implement a class with public and private members is an example

of data abstraction. Consider the following example −

#include <iostream>

using namespace std;

class Adder {

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 13 Naveen kumar Arem,Asst Professor

public:

// constructor

Adder(int i = 0) {

total = i;

}

// interface to outside world
void addNum(int number) {

total += number;

}

// interface to outside world

int getTotal() {

return total;

};

private:

// hidden data from outside world

int total;

};

int main()

{

Adder a;

a.addNum(10);

a.addNum(20);

a.addNum(30);

cout << "Total " << a.getTotal() <<endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Total 60

Above class adds numbers together, and returns the sum. The public members -
addNum and getTotal are the interfaces to the outside world and a user needs to know them to

use the class. The private member total is something that the user doesn't need to know about,

but is needed for the class to operate properly.

Encapsulation

Binding (or wrapping) code and data together into a single unit is known as
encapsulation. For example: capsule, it is wrapped with different medicines.

All C++ programs are composed of the following two fundamental elements −

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 14 Naveen kumar Arem,Asst Professor

 Program statements (code) − This is the part of a program that performs actions and they
are called functions.

 Program data − The data is the information of the program which gets affected by the

program functions.

Encapsulation is an Object Oriented Programming concept that binds together the data and

functions that manipulate the data, and that keeps both safe from outside interference and misuse.
Data encapsulation led to the important OOP concept of data hiding.

Data encapsulation is a mechanism of bundling the data, and the functions that use them

and data abstraction is a mechanism of exposing only the interfaces and hiding the

implementation details from the user.

C++ supports the properties of encapsulation and data hiding through the creation of user-

defined types, called classes. We already have studied that a class can contain private,

protected and public members. By default, all items defined in a class are private. For example

−

class Box {

public:

double getVolume(void) {

return length * breadth * height;

}

private:
double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

};

The variables length, breadth, and height are private. This means that they can be accessed only

by other members of the Box class, and not by any other part of your program. This is one way

encapsulation is achieved.

To make parts of a class public (i.e., accessible to other parts of your program), you must declare

them after the public keyword. All variables or functions defined after the public specifier are

accessible by all other functions in your program.

Making one class a friend of another exposes the implementation details and reduces

encapsulation. The ideal is to keep as many of the details of each class hidden from all other

classes as possible.

Data Encapsulation Example

Any C++ program where you implement a class with public and private members is an example

of data encapsulation and data abstraction. Consider the following example −

#include <iostream>

using namespace std;

class Adder {

public:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 15 Naveen kumar Arem,Asst Professor

// constructor
Adder(int i = 0) {

total = i;

}

// interface to outside world

void addNum(int number) {

total += number;

}

// interface to outside world

int getTotal() {

return total;

};

private:
// hidden data from outside world
int total;

};

int main() {

Adder a;

a.addNum(10);

a.addNum(20);

a.addNum(30);

cout << "Total " << a.getTotal() <<endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Total 60

Above class adds numbers together, and returns the sum. The public

members addNum and getTotal are the interfaces to the outside world and a user needs to know
them to use the class. The private member total is something that is hidden from the outside

world, but is needed for the class to operate properly.

Advantage of OOPs over Procedure-oriented programming language:

1. OOPs makes development and maintenance easier where as in Procedure-oriented

programming language it is not easy to manage if code grows as project size grows.

2. OOPs provide data hiding whereas in Procedure-oriented programming language a global

data can be accessed from anywhere.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 16 Naveen kumar Arem,Asst Professor

3. OOPs provide ability to simulate real-world event much more effectively. We can

provide the solution of real word problem if we are using the Object-Oriented

Programming language.

Primitive Built-in Types

C++ offers the programmer a rich assortment of built-in as well as user defined data types.
Following table lists down seven basic C++ data types −

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers −

 signed

 unsigned

 short

 long

The following table shows the variable type, how much memory it takes to store the value in

memory, and what is maximum and minimum value which can be stored in such type of

variables.

Type Typical Bit Width Typical Range

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 17 Naveen kumar Arem,Asst Professor

char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int 2bytes 0 to 65,535

signed short int 2bytes -32768 to 32767

long int 8bytes -2,147,483,648 to 2,147,483,647

signed long int 8bytes same as long int

unsigned long int 8bytes 0 to 4,294,967,295

long long int 8bytes -(2^63) to (2^63)-1

unsigned long long int 8bytes 0 to 18,446,744,073,709,551,615

float 4bytes

double 8bytes

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 18 Naveen kumar Arem,Asst Professor

long double 12bytes

wchar_t 2 or 4 bytes 1 wide character

The size of variables might be different from those shown in the above table, depending on the
compiler and the computer you are using.

Following is the example, which will produce correct size of various data types on your

computer.

#include <iostream>

using namespace std;

int main() {

cout << "Size of char : " << sizeof(char) << endl;
cout << "Size of int : " << sizeof(int) << endl;

cout << "Size of short int : " << sizeof(short int) << endl;

cout << "Size of long int : " << sizeof(long int) << endl;

cout << "Size of float : " << sizeof(float) << endl;

cout << "Size of double : " << sizeof(double) << endl;

cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;

return 0;

}

This example uses endl, which inserts a new-line character after every line and << operator is

being used to pass multiple values out to the screen. We are also using sizeof() operator to get

size of various data types.

When the above code is compiled and executed, it produces the following result which can vary

from machine to machine −

Size of char : 1

Size of int : 4

Size of short int : 2

Size of long int : 4

Size of float : 4

Size of double : 8

Size of wchar_t : 4

typedef Declarations

You can create a new name for an existing type using typedef. Following is the simple syntax to

define a new type using typedef −

typedef type newname;

For example, the following tells the compiler that feet is another name for int −

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 19 Naveen kumar Arem,Asst Professor

typedef int feet;

Now, the following declaration is perfectly legal and creates an integer variable called distance −

feet distance;

Enumerated Types

An enumerated type declares an optional type name and a set of zero or more identifiers that can

be used as values of the type. Each enumerator is a constant whose type is the enumeration.

Creating an enumeration requires the use of the keyword enum. The general form of an

enumeration type is −

enum enum-name { list of names } var-list;

Here, the enum-name is the enumeration's type name. The list of names is comma separated.

For example, the following code defines an enumeration of colors called colors and the variable

c of type color. Finally, c is assigned the value "blue".

enum color { red, green, blue } c;

c = blue;

By default, the value of the first name is 0, the second name has the value 1, and the third has the

value 2, and so on. But you can give a name, a specific value by adding an initializer. For

example, in the following enumeration, green will have the value 5.

enum color { red, green = 5, blue };

Here, blue will have a value of 6 because each name will be one greater than the one that

precedes it.

Variable Declaration:

A variable provides us with named storage that our programs can manipulate. Each variable in

C++ has a specific type, which determines the size and layout of the variable's memory; the

range of values that can be stored within that memory; and the set of operations that can be

applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must

begin with either a letter or an underscore. Upper and lowercase letters are distinct because C++

is case-sensitive −

There are following basic types of variable in C++ as explained in last chapter −

Sr.No Type & Description

1
Bool

Stores either value true or false.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 20 Naveen kumar Arem,Asst Professor

2
char

Typically a single octet (one byte). This is an integer type.

3
int

The most natural size of integer for the machine.

4

float

A single-precision floating point value.

5
double

A double-precision floating point value.

6

void

Represents the absence of type.

7
wchar_t

A wide character type.

C++ also allows to define various other types of variables, which we will cover in subsequent

chapters like Enumeration, Pointer, Array, Reference, Data structures, and Classes.

Following section will cover how to define, declare and use various types of variables.

Variable Definition in C++

A variable definition tells the compiler where and how much storage to create for the variable. A
variable definition specifies a data type, and contains a list of one or more variables of that type
as follows −

type variable_list;

Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or any

user-defined object, etc., and variable_list may consist of one or more identifier names separated

by commas. Some valid declarations are shown here −

int i, j, k;

char c, ch;

float f, salary;

double d;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 21 Naveen kumar Arem,Asst Professor

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the compiler
to create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists

of an equal sign followed by a constant expression as follows −

type variable_name = value;

Some examples are −

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

For definition without an initializer: variables with static storage duration are implicitly

initialized with NULL (all bytes have the value 0); the initial value of all other variables is
undefined.

Variable Declaration in C++

A variable declaration provides assurance to the compiler that there is one variable existing with

the given type and name so that compiler proceed for further compilation without needing

complete detail about the variable. A variable declaration has its meaning at the time of

compilation only, compiler needs actual variable definition at the time of linking of the program.

A variable declaration is useful when you are using multiple files and you define your variable in

one of the files which will be available at the time of linking of the program. You will

use extern keyword to declare a variable at any place. Though you can declare a variable

multiple times in your C++ program, but it can be defined only once in a file, a function or a

block of code.

Example

Try the following example where a variable has been declared at the top, but it has been defined
inside the main function −

#include <iostream>

using namespace std;

// Variable declaration:

extern int a, b;

extern int c;

extern float f;

int main () {

// Variable definition:

int a, b;

int c;

float f;

// actual initialization

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 22 Naveen kumar Arem,Asst Professor

a = 10;

b = 20;

c = a + b;

cout << c << endl ;

f = 70.0/3.0;

cout << f << endl ;

return 0;

}

When the above code is compiled and executed, it produces the following result −

30

23.3333

Same concept applies on function declaration where you provide a function name at the time of

its declaration and its actual definition can be given anywhere else. For example −

// function declaration

int func();

int main() {

// function call

int i = func();

}

// function definition

int func() {

return 0;

}

Lvalues and Rvalues

There are two kinds of expressions in C++ −

 lvalue − Expressions that refer to a memory location is called "lvalue" expression. An

lvalue may appear as either the left-hand or right-hand side of an assignment.

 rvalue − The term rvalue refers to a data value that is stored at some address in memory.

An rvalue is an expression that cannot have a value assigned to it which means an rvalue

may appear on the right- but not left-hand side of an assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric literals
are rvalues and so may not be assigned and can not appear on the left-hand side. Following is a

valid statement −

Declaration of Expressions in C++

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 23 Naveen kumar Arem,Asst Professor

Declaration of operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C++ is rich in built-in operators and provide the following types of operators −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise, assignment and other
operators one by one.

Arithmetic Operators

There are following arithmetic operators supported by C++ language −

Assume variable A holds 10 and variable B holds 20, then −

Show Examples

C++ expression consists of operators, constants, and variables which are arranged

according to the rules of the language. It can also contain function calls which return values.

An expression can consist of one or more operands, zero or more operators to compute a value.

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the

first

A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of

after an integer division

B % A will give 0

https://www.tutorialspoint.com/cplusplus/cpp_arithmatic_operators.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 24 Naveen kumar Arem,Asst Professor

Relational Operators

There are following relational operators supported by C++ language

Assume variable A holds 10 and variable B holds 20, then −

Show Examples

++ Increment operator, increases integer

value by one

A++ will give 11

-- Decrement operator, decreases

integer value by one

A-- will give 9

Operator Description Example

== Checks if the values of two operands

are equal or not, if yes then condition

becomes true.

(A == B) is not true.

!= Checks if the values of two operands

are equal or not, if values are not

equal then condition becomes true.

(A != B) is true.

> Checks if the value of left operand is

greater than the value of right

operand, if yes then condition

becomes true.

(A > B) is not true.

< Checks if the value of left operand is

less than the value of right operand,

if yes then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is

greater than or equal to the value of

right operand, if yes then condition

becomes true.

(A >= B) is not true.

https://www.tutorialspoint.com/cplusplus/cpp_relational_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 25 Naveen kumar Arem,Asst Professor

Logical Operators

There are following logical operators supported by C++ language.

Assume variable A holds 1 and variable B holds 0, then −

Show Examples

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^

are as follows −

<= Checks if the value of left operand is

less than or equal to the value of right

operand, if yes then condition

becomes true.

(A <= B) is true.

Operator Description Example

&& Called Logical AND operator. If both

the operands are non-zero, then

condition becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any

of the two operands is non-zero, then

condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its

operand. If a condition is true, then

Logical NOT operator will make

false.

!(A && B) is true.

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

https://www.tutorialspoint.com/cplusplus/cpp_logical_operators.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 26 Naveen kumar Arem,Asst Professor

Assume if A = 60; and B = 13; now in binary format they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C++ language are listed in the following table. Assume

variable A holds 60 and variable B holds 13, then −

Show Examples

1 1 1 1 0

1 0 0 1 1

Operator Description Example

& Binary AND Operator copies a bit to

the result if it exists in both operands.

(A & B) will give 12 which is 0000

1100

| Binary OR Operator copies a bit if it

exists in either operand.

(A | B) will give 61 which is 0011

1101

^ Binary XOR Operator copies the bit

if it is set in one operand but not

both.

(A ^ B) will give 49 which is 0011

0001

~ Binary Ones Complement Operator is

unary and has the effect of 'flipping'

bits.

(~A) will give -61 which is 1100

0011 in 2's complement form due to a

signed binary number.

<< Binary Left Shift Operator. The left

operands value is moved left by the

A << 2 will give 240 which is 1111

https://www.tutorialspoint.com/cplusplus/cpp_bitwise_operators.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 27 Naveen kumar Arem,Asst Professor

Assignment Operators

There are following assignment operators supported by C++ language −

Show Examples

number of bits specified by the right

operand.

0000

>> Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15 which is 0000

1111

Operator Description Example

= Simple assignment operator, Assigns

values from right side operands to left

side operand.

C = A + B will assign value of A +

B into C

+= Add AND assignment operator, It adds

right operand to the left operand and

assign the result to left operand.

C += A is equivalent to C = C + A

-= Subtract AND assignment operator, It

subtracts right operand from the left

operand and assign the result to left

operand.

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator, It

multiplies right operand with the left

operand and assign the result to left

operand.

C *= A is equivalent to C = C * A

/= Divide AND assignment operator, It

divides left operand with the right

operand and assign the result to left

C /= A is equivalent to C = C / A

https://www.tutorialspoint.com/cplusplus/cpp_assignment_operators.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 28 Naveen kumar Arem,Asst Professor

Misc Operators

The following table lists some other operators that C++ supports.

operand.

%= Modulus AND assignment operator, It

takes modulus using two operands and

assign the result to left operand.

C %= A is equivalent to C = C %

A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment

operator.

C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment

operator.

C |= 2 is same as C = C | 2

Sr.No Operator & Description

1
sizeof

sizeof operator returns the size of a variable. For example, sizeof(a), where ‘a’ is
integer, and will return 4.

2
Condition ? X : Y

Conditional operator (?). If Condition is true then it returns value of X otherwise

returns value of Y.

3

,

Comma operator causes a sequence of operations to be performed. The value of

the entire comma expression is the value of the last expression of the comma-

https://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 29 Naveen kumar Arem,Asst Professor

Operators Precedence in C++

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator −

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher

precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest

appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Show Examples

separated list.

4
. (dot) and -> (arrow)

Member operators are used to reference individual members of classes,

structures, and unions.

5
Cast

Casting operators convert one data type to another. For example, int(2.2000)

would return 2.

6
&

Pointer operator & returns the address of a variable. For example &a; will give

actual address of the variable.

7

*

Pointer operator * is pointer to a variable. For example *var; will pointer to a

variable var.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

https://www.tutorialspoint.com/cplusplus/cpp_operators_precedence.htm
https://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 30 Naveen kumar Arem,Asst Professor

C++ Expression Evaluation

In the C++ programming language, an expression is evaluated based on the operator precedence

and associativity. When there are multiple operators in an expression, they are evaluated

according to their precedence and associativity. The operator with higher precedence is evaluated

first and the operator with the least precedence is evaluated last.

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

To understand expression evaluation in c, let us consider the following simple example

expression.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 31 S.GNANAPRASANNA, Asst,Professor

Type Conversion:

Type conversion is the process of converting a data value from one data type to another data

type.

In the C++ programming language, the data conversion is performed in two different methods

and they are as follows.

 Implicit Conversion (Type Conversion)

 Explicit Conversion (Type Casting)

Implicit Conversion (Type Conversion)

The type conversion is the process of converting a data value from one data type to another data

type automatically by the compiler. Sometimes type conversion is also called implicit type

conversion. The implicit type conversion is automatically performed by the compiler.

For example, in c programming language, when we assign an integer value to a float variable the

integer value automatically gets converted to float value by adding decimal value 0. And when a

float value is assigned to an integer variable the float value automatically gets converted to an

integer value by removing the decimal value. To understand more about type conversion observe

the following...

int i = 10 ;

float x = 15.5 ;

char ch = 'A' ;

i = x ; =======> x value 15.5 is converted as 15 and assigned to variable i

x = i ; =======> Here i value 10 is converted as 10.000000 and assigned to variable x

i = ch ; =======> Here the ASCII value of A (65) is assigned to i

#include <iostream>

using namespace std;

int main()

{

int i = 95 ;

float f = 90.99 ;

char ch = 'A' ;

i = f ; //float to int --> 90.99 to 90

cout << "i value is " << i << endl;

f = i ; // int to float --> 90 to 90.000000

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 32 S.GNANAPRASANNA, Asst Professor

Explicit Conversion (Type Casting)

Typecasting is also called an explicit type conversion. Compiler converts data from one data

type to another data type implicitly. When compiler converts implicitly, there may be a data loss.

In such a case, we convert the data from one data type to another data type using explicit type

conversion. To perform this we use the unary cast operator. To convert data from one type to

another type we specify the target data type in parenthesis as a prefix to the data value that has to

be converted. The general syntax of typecasting is as follows.

Example

int totalMarks = 450, maxMarks = 600 ;

float average ;

average = (float) totalMarks / maxMarks * 100 ;

In the above example code, both totalMarks and maxMarks are integer data values. When we

perform totalMarks / maxMarks the result is a float value, but the destination (average) datatype

is a float. So we use type casting to convert totalMarks and maxMarks into float data type.

cout << "f value is " << f << endl;

i = ch ; // char to int --> 'A' to 65

cout << "i value is " << i << endl;

return 0;

#include <iostream>

using namespace std;

int main()

{

int a, b, c ;

float avg ;

cout << "Enter any three integer values : ";

cin >> a >> b >> c;

avg = (a + b + c) / 3 ;

cout << "avg before type casting = " << avg << endl;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 33 S.GNANAPRASANNA, Asst Professor

As you know every variable is a memory location and every memory location has its address

defined which can be accessed using ampersand (&) operator which denotes an address in

memory. Consider the following which will print the address of the variables defined −

#include <iostream>

using namespace std;

int main () {

int var1;

char var2[10];
cout << "Address of var1 variable: ";

cout << &var1 << endl;

cout << "Address of var2 variable: ";

cout << &var2 << endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var1 variable: 0xbfebd5c0

Address of var2 variable: 0xbfebd5b6

What are Pointers?

A pointer is a variable whose value is the address of another variable. Like any variable or

constant, you must declare a pointer before you can work with it. The general form of a pointer

variable declaration is −

type *var-name;

Here, type is the pointer's base type; it must be a valid C++ type and var-name is the name of

the pointer variable. The asterisk you used to declare a pointer is the same asterisk that you use

for multiplication. However, in this statement the asterisk is being used to designate a variable as

a pointer. Following are the valid pointer declaration −

int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *ch // pointer to character

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is

the same, a long hexadecimal number that represents a memory address. The only difference

avg = (float)(a + b + c) / 3 ;

cout << "avg after type casting = " << avg << endl;

return 0;

Pointers:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 34 S.GNANAPRASANNA, Asst Professor

between pointers of different data types is the data type of the variable or constant that the
pointer points to.

Using Pointers in C++

There are few important operations, which we will do with the pointers very frequently. (a) We

define a pointer variable. (b) Assign the address of a variable to a pointer. (c) Finally access the

value at the address available in the pointer variable. This is done by using unary operator * that

returns the value of the variable located at the address specified by its operand. Following

example makes use of these operations −

#include <iostream>

using namespace std;

int main () {

int var = 20; // actual variable declaration.

int *ip; // pointer variable

ip = &var; // store address of var in pointer variable

cout << "Value of var variable: ";

cout << var << endl;

// print the address stored in ip pointer variable

cout << "Address stored in ip variable: ";

cout << ip << endl;
// access the value at the address available in pointer

cout << "Value of *ip variable: ";

cout << *ip << endl;

return 0;

}

When the above code is compiled and executed, it produces result something as follows −

Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20

Arrays: C++ provides a data structure, the array, which stores a fixed-size sequential collection

of elements of the same type. An array is used to store a collection of data, but it is often more

useful to think of an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you

declare one array variable such as numbers and use numbers[0], numbers[1], and ...,

numbers[99] to represent individual variables. A specific element in an array is accessed by an

index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 35 S.GNANAPRASANNA, Asst Professor

Declaring Arrays

To declare an array in C++, the programmer specifies the type of the elements and the number of

elements required by an array as follows −

type arrayName [arraySize];

This is called a single-dimension array. The arraySize must be an integer constant greater than

zero and type can be any valid C++ data type. For example, to declare a 10-element array called

balance of type double, use this statement −

double balance[10];

Initializing Arrays

You can initialize C++ array elements either one by one or using a single statement as follows −

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

The number of values between braces { } can not be larger than the number of elements that we
declare for the array between square brackets []. Following is an example to assign a single
element of the array −

If you omit the size of the array, an array just big enough to hold the initialization is created.

Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};

You will create exactly the same array as you did in the previous example.

balance[4] = 50.0;

The above statement assigns element number 5th in the array a value of 50.0. Array with 4th index
will be 5th, i.e., last element because all arrays have 0 as the index of their first element which is

also called base index. Following is the pictorial representaion of the same array we discussed

above −

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the

element within square brackets after the name of the array. For example −

double salary = balance[9];

The above statement will take 10th element from the array and assign the value to salary variable.

Following is an example, which will use all the above-mentioned three concepts viz. declaration,

assignment and accessing arrays −

#include <iostream>

using namespace std;

#include <iomanip>

using std::setw;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 36 S.GNANAPRASANNA, Asst Professor

int main () {

int n[10]; // n is an array of 10 integers

// initialize elements of array n to 0
for (int i = 0; i < 10; i++) {

n[i] = i + 100; // set element at location i to i + 100

}

cout << "Element" << setw(13) << "Value" << endl;

// output each array element's value
for (int j = 0; j < 10; j++) {

cout << setw(7)<< j << setw(13) << n[j] << endl;

}

return 0;

}

This program makes use of setw() function to format the output. When the above code is

compiled and executed, it produces the following result −

Element Value

0 100

1 101

2 102

3 103

4 104

5 105

6 106

7 107

8 108
9 109

Arrays and Pointers:

It is most likely that you would not understand this chapter until you go through the chapter
related C++ Pointers.

So assuming you have bit understanding on pointers in C++, let us start: An array name is a

constant pointer to the first element of the array. Therefore, in the declaration −

double balance[50];

balance is a pointer to &balance[0], which is the address of the first element of the array

balance. Thus, the following program fragment assigns p the address of the first element

of balance −

double *p;

double balance[10];

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 37 S.GNANAPRASANNA, Asst Professor

p = balance;

It is legal to use array names as constant pointers, and vice versa. Therefore, *(balance + 4) is a

legitimate way of accessing the data at balance[4].

Once you store the address of first element in p, you can access array elements using *p, *(p+1),

*(p+2) and so on. Below is the example to show all the concepts discussed above −

#include <iostream>

using namespace std;

int main () {

// an array with 5 elements.

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

double *p;

p = balance;

// output each array element's value
cout << "Array values using pointer " << endl;
for (int i = 0; i < 5; i++) {

cout << "*(p + " << i << ") : ";

cout << *(p + i) << endl;

}

cout << "Array values using balance as address " << endl;

for (int i = 0; i < 5; i++) {

cout << "*(balance + " << i << ") : ";

cout << *(balance + i) << endl;
}

return 0;

}

When the above code is compiled and executed, it produces the following result −

Array values using pointer

*(p + 0) : 1000
*(p + 1) : 2

*(p + 2) : 3.4

*(p + 3) : 17

*(p + 4) : 50

Array values using balance as address

*(balance + 0) : 1000

*(balance + 1) : 2

*(balance + 2) : 3.4

*(balance + 3) : 17

*(balance + 4) : 50

In the above example, p is a pointer to double which means it can store address of a variable of

double type. Once we have address in p, then *p will give us value available at the address stored
in p, as we have shown in the above example.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 38 S.GNANAPRASANNA, Asst Professor

C++ provides following two types of string representations −

 The C-style character string.

 The string class type introduced with Standard C++.

The C-Style Character String

The C-style character string originated within the C language and continues to be supported
within C++. This string is actually a one-dimensional array of characters which is terminated by

a null character '\0'. Thus a null-terminated string contains the characters that comprise the string

followed by a null.

The following declaration and initialization create a string consisting of the word "Hello". To

hold the null character at the end of the array, the size of the character array containing the string

is one more than the number of characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization, then you can write the above statement as follows −

char greeting[] = "Hello";

Following is the memory presentation of above defined string in C/C++ −

Actually, you do not place the null character at the end of a string constant. The C++ compiler

automatically places the '\0' at the end of the string when it initializes the array. Let us try to print

above-mentioned string −

#include <iostream>

using namespace std;

int main ()

{

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

cout << "Greeting message: ";

cout << greeting << endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Greeting message: Hello

C++ supports a wide range of functions that manipulate null-terminated strings −

Strings:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 39 S.GNANAPRASANNA, Asst Professor

Sr.No Function & Purpose

1
strcpy(s1, s2);

Copies string s2 into string s1.

2
strcat(s1, s2);

Concatenates string s2 onto the end of string s1.

3
strlen(s1);

Returns the length of string s1.

4
strcmp(s1, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5

strchr(s1, ch);

Returns a pointer to the first occurrence of character ch in string s1.

6

strstr(s1, s2);

Returns a pointer to the first occurrence of string s2 in string s1.

Following example makes use of few of the above-mentioned functions −

#include <iostream>

#include <cstring>

using namespace std;

int main () {

char str1[10] = "Hello";

char str2[10] = "World";

char str3[10];

int len ;
// copy str1 into str3

strcpy(str3, str1);

cout << "strcpy(str3, str1) : " << str3 << endl;

// concatenates str1 and str2

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 40 S.GNANAPRASANNA, Asst Professor

strcat(str1, str2);

cout << "strcat(str1, str2): " << str1 << endl;

// total lenghth of str1 after concatenation

len = strlen(str1);

cout << "strlen(str1) : " << len << endl;

return 0;

}

When the above code is compiled and executed, it produces result something as follows −

strcpy(str3, str1) : Hello

strcat(str1, str2): HelloWorld

strlen(str1) : 10

The String Class in C++

The standard C++ library provides a string class type that supports all the operations mentioned

above, additionally much more functionality. Let us check the following example −

#include <iostream>

#include <string>

using namespace std;

int main () {

string str1 = "Hello";
string str2 = "World";
string str3;

int len ;

// copy str1 into str3

str3 = str1;

cout << "str3 : " << str3 << endl;
// concatenates str1 and str2

str3 = str1 + str2;

cout << "str1 + str2 : " << str3 << endl;

// total length of str3 after concatenation

len = str3.size();

cout << "str3.size() : " << len << endl;

return 0;
}

When the above code is compiled and executed, it produces result something as follows −

str3 : Hello

str1 + str2 : HelloWorld
str3.size() : 10

Reference:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 41 S.GNANAPRASANNA, Asst Professor

A reference variable is an alias, that is, another name for an already existing variable. Once a
reference is initialized with a variable, either the variable name or the reference name may be

used to refer to the variable.

References vs Pointers

References are often confused with pointers but three major differences between references and

pointers are −

 You cannot have NULL references. You must always be able to assume that a reference is

connected to a legitimate piece of storage.

 Once a reference is initialized to an object, it cannot be changed to refer to another object.

Pointers can be pointed to another object at any time.

 A reference must be initialized when it is created. Pointers can be initialized at any time.

Creating References in C++

Think of a variable name as a label attached to the variable's location in memory. You can then
think of a reference as a second label attached to that memory location. Therefore, you can

access the contents of the variable through either the original variable name or the reference. For

example, suppose we have the following example −

int i = 17;

We can declare reference variables for i as follows.

int& r = i;

Read the & in these declarations as reference. Thus, read the first declaration as "r is an integer

reference initialized to i" and read the second declaration as "s is a double reference initialized to

d.". Following example makes use of references on int and double −

#include <iostream>

using namespace std;

int main () {

// declare simple variables

int i;

double d;

// declare reference variables

int& r = i;

double& s = d;

i = 5;

cout << "Value of i : " << i << endl;
cout << "Value of i reference : " << r << endl;
d = 11.7;

cout << "Value of d : " << d << endl;

cout << "Value of d reference : " << s << endl;

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 42 S.GNANAPRASANNA, Asst Professor

There may be a situation, when you need to execute a block of code several number of times. In

general, statements are executed sequentially: The first statement in a function is executed first,

followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and

following is the general from of a loop statement in most of the programming languages −

C++ programming language provides the following type of loops to handle looping

requirements.

When the above code is compiled together and executed, it produces the following result −

Value of i : 5

Value of i reference : 5

Value of d : 11.7

Value of d reference : 11.7

Sr.No Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is true. It tests

the condition before executing the loop body.

2 for loop

Execute a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

3 do...while loop

Like a ‘while’ statement, except that it tests the condition at the end of the loop

body.

4 nested loops

You can use one or more loop inside any another ‘while’, ‘for’ or ‘do..while’

loop.

https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_for_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_do_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_loops.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 43 S.GNANAPRASANNA, Asst Professor

Loop Control Statements(flow)

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

C++ supports the following control statements.

Sr.No Control Statement & Description

1 break statement

Terminates the loop or switch statement and transfers execution to the statement

immediately following the loop or switch.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest its

condition prior to reiterating.

3 goto statement

Transfers control to the labeled statement. Though it is not advised to use goto

statement in your program.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally
used for this purpose. Since none of the three expressions that form the ‘for’ loop are required,

you can make an endless loop by leaving the conditional expression empty.

#include <iostream>
using namespace std;

int main () {

for(; ;) {

printf("This loop will run forever.\n");

}

return 0;

}

When the conditional expression is absent, it is assumed to be true. You may have an

initialization and increment expression, but C++ programmers more commonly use the ‘for (;;)’

construct to signify an infinite loop.

NOTE − You can terminate an infinite loop by pressing Ctrl + C keys.

https://www.tutorialspoint.com/cplusplus/cpp_break_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_continue_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_goto_statement.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 44 S.GNANAPRASANNA, Asst Professor

A function is a group of statements that together perform a task. Every C++ program has at least

one function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among

different functions is up to you, but logically the division usually is such that each function

performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters. A

function definition provides the actual body of the function.

The C++ standard library provides numerous built-in functions that your program can call. For

example, function strcat() to concatenate two strings, function memcpy() to copy one memory

location to another location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure etc.

Defining a Function

The general form of a C++ function definition is as follows −

return_type function_name(parameter list) {

body of the function

}

A C++ function definition consists of a function header and a function body. Here are all the

parts of a function −

 Return Type − A function may return a value. The return_type is the data type of the

value the function returns. Some functions perform the desired operations without

returning a value. In this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The function name and the

parameter list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked, you pass a

value to the parameter. This value is referred to as actual parameter or argument. The

parameter list refers to the type, order, and number of the parameters of a function.

Parameters are optional; that is, a function may contain no parameters.

 Function Body − The function body contains a collection of statements that define what

the function does.

Example

Following is the source code for a function called max(). This function takes two parameters

num1 and num2 and return the biggest of both −

// function returning the max between two numbers

int max(int num1, int num2) {

// local variable declaration

Functions

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 45 S.GNANAPRASANNA, Asst Professor

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function.

The actual body of the function can be defined separately.

A function declaration has the following parts −

return_type function_name(parameter list);

For the above defined function max(), following is the function declaration −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so

following is also valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and you call that

function in another file. In such case, you should declare the function at the top of the file calling

the function.

Calling a Function

While creating a C++ function, you give a definition of what the function has to do. To use a
function, you will have to call or invoke that function.

When a program calls a function, program control is transferred to the called function. A called

function performs defined task and when it’s return statement is executed or when its function-

ending closing brace is reached, it returns program control back to the main program.

To call a function, you simply need to pass the required parameters along with function name,

and if function returns a value, then you can store returned value. For example −

#include <iostream>

using namespace std;

// function declaration

int max(int num1, int num2);

int main () {

// local variable declaration:

int a = 100;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 46 S.GNANAPRASANNA, Asst Professor

int b = 200;
int ret;

// calling a function to get max value.

ret = max(a, b);

cout << "Max value is : " << ret << endl;
return 0;

}

// function returning the max between two numbers
int max(int num1, int num2) {

// local variable declaration

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

I kept max() function along with main() function and compiled the source code. While running

final executable, it would produce the following result −

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the

arguments. These variables are called the formal parameters of the function.

The formal parameters behave like other local variables inside the function and are created upon

entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function –

Sr.No Call Type & Description

1 Call by Value

This method copies the actual value of an argument into the formal parameter of

the function. In this case, changes made to the parameter inside the function have

no effect on the argument.

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_value.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 47 S.GNANAPRASANNA, Asst Professor

2 Call by Pointer

This method copies the address of an argument into the formal parameter. Inside

the function, the address is used to access the actual argument used in the call.

This means that changes made to the parameter affect the argument.

3 Call by Reference

This method copies the reference of an argument into the formal parameter.

Inside the function, the reference is used to access the actual argument used in the

call. This means that changes made to the parameter affect the argument.

By default, C++ uses call by value to pass arguments. In general, this means that code within a

function cannot alter the arguments used to call the function and above mentioned example while

calling max() function used the same method.

Default Values for Parameters

When you define a function, you can specify a default value for each of the last parameters. This

value will be used if the corresponding argument is left blank when calling to the function.

This is done by using the assignment operator and assigning values for the arguments in the

function definition. If a value for that parameter is not passed when the function is called, the

default given value is used, but if a value is specified, this default value is ignored and the passed

value is used instead. Consider the following example −

#include <iostream>

using namespace std;

int sum(int a, int b = 20) {

int result;

result = a + b;

return (result);

}

int main () {

// local variable declaration:

int a = 100;
int b = 200;

int result;

// calling a function to add the values.
result = sum(a, b);

cout << "Total value is :" << result << endl;

// calling a function again as follows.

result = sum(a);

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_pointer.htm
https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_reference.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 48 S.GNANAPRASANNA, Asst Professor

cout << "Total value is :" << result << endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Total value is :300

Total value is :120

C++ inline function is powerful concept that is commonly used with classes. If a function is

inline, the compiler places a copy of the code of that function at each point where the function is

called at compile time.

Any change to an inline function could require all clients of the function to be recompiled

because compiler would need to replace all the code once again otherwise it will continue with

old functionality.

To inline a function, place the keyword inline before the function name and define the function

before any calls are made to the function. The compiler can ignore the inline qualifier in case

defined function is more than a line.

A function definition in a class definition is an inline function definition, even without the use of
the inline specifier.

Following is an example, which makes use of inline function to return max of two numbers −

#include <iostream>

using namespace std;

inline int Max(int x, int y) {

return (x > y)? x : y;

}

// Main function for the program

int main() {

cout << "Max (20,10): " << Max(20,10) << endl;

cout << "Max (0,200): " << Max(0,200) << endl;

cout << "Max (100,1010): " << Max(100,1010) << endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Max (20,10): 20

Max (0,200): 200

Inline function:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 49 S.GNANAPRASANNA, Asst Professor

Max (100,1010): 1010

Recursion is the technique of making a function call itself. This technique provides a way to

break complicated problems down into simple problems which are easier to solve.

Recursion may be a bit difficult to understand. The best way to figure out how it works is to

experiment with it.

Recursion Example

Adding two numbers together is easy to do, but adding a range of numbers is more complicated.
In the following example, recursion is used to add a range of numbers together by breaking it

down into the simple task of adding two numbers:

int sum(int k) {

if (k > 0) {

return k + sum(k - 1);

} else {

return 0;

}

}

int main() {

int result = sum(10);

cout << result;

return 0;

}

C++ allows you to pass a pointer to a function. To do so, simply declare the function parameter

as a pointer type.

Following a simple example where we pass an unsigned long pointer to a function and change

the value inside the function which reflects back in the calling function −

#include <iostream>

Recusive function:

Example

pointers to functions:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 50 S.GNANAPRASANNA, Asst Professor

#include <ctime>

using namespace std;

void getSeconds(unsigned long *par);

int main () {

unsigned long sec;

getSeconds(&sec);

// print the actual value

cout << "Number of seconds :" << sec << endl;

return 0;

}

void getSeconds(unsigned long *par) {

// get the current number of seconds

*par = time(NULL);

return;

}

When the above code is compiled and executed, it produces the following result −

Number of seconds :1294450468

The function which can accept a pointer, can also accept an array as shown in the following
example −

#include <iostream>

using namespace std;

// function declaration:

double getAverage(int *arr, int size);

int main () {

// an int array with 5 elements.

int balance[5] = {1000, 2, 3, 17, 50};

double avg;

// pass pointer to the array as an argument.

avg = getAverage(balance, 5) ;

// output the returned value

cout << "Average value is: " << avg << endl;

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 51 S.GNANAPRASANNA, Asst Professor

double getAverage(int *arr, int size) {
int i, sum = 0;

double avg;

for (i = 0; i < size; ++i) {

sum += arr[i];

}

avg = double(sum) / size;

return avg;

}

When the above code is compiled together and executed, it produces the following result −

Average value is: 214.4

A good understanding of how dynamic memory really works in C++ is essential to becoming a

good C++ programmer. Memory in your C++ program is divided into two parts −

 The stack − All variables declared inside the function will take up memory from the

stack.

 The heap − This is unused memory of the program and can be used to allocate the

memory dynamically when program runs.

Many times, you are not aware in advance how much memory you will need to store particular

information in a defined variable and the size of required memory can be determined at run time.

You can allocate memory at run time within the heap for the variable of a given type using a

special operator in C++ which returns the address of the space allocated. This operator is

called new operator.

If you are not in need of dynamically allocated memory anymore, you can use delete operator,

which de-allocates memory that was previously allocated by new operator.

New and delete Operators

There is following generic syntax to use new operator to allocate memory dynamically for any

data-type.

new data-type;

Here, data-type could be any built-in data type including an array or any user defined data types

include class or structure. Let us start with built-in data types. For example we can define a

pointer to type double and then request that the memory be allocated at execution time. We can

do this using the new operator with the following statements −

double* pvalue = NULL; // Pointer initialized with null

pvalue = new double; // Request memory for the variable

Dynamic memory allocation:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 52 S.GNANAPRASANNA, Asst Professor

The memory may not have been allocated successfully, if the free store had been used up. So it is
good practice to check if new operator is returning NULL pointer and take appropriate action as

below −

double* pvalue = NULL;

if(!(pvalue = new double)) {

cout << "Error: out of memory." <<endl;

exit(1);

}

The malloc() function from C, still exists in C++, but it is recommended to avoid using malloc()

function. The main advantage of new over malloc() is that new doesn't just allocate memory, it

constructs objects which is prime purpose of C++.

At any point, when you feel a variable that has been dynamically allocated is not anymore
required, you can free up the memory that it occupies in the free store with the ‘delete’ operator

as follows −

delete pvalue; // Release memory pointed to by pvalue

Let us put above concepts and form the following example to show how ‘new’ and ‘delete’ work

−

#include <iostream>

using namespace std;

int main () {

double* pvalue = NULL; // Pointer initialized with null

pvalue = new double; // Request memory for the variable

*pvalue = 29494.99; // Store value at allocated address

cout << "Value of pvalue : " << *pvalue << endl;

delete pvalue; // free up the memory.

return 0;

}

If we compile and run above code, this would produce the following result −

Value of pvalue : 29495

Dynamic Memory Allocation for Arrays

Consider you want to allocate memory for an array of characters, i.e., string of 20 characters.

Using the same syntax what we have used above we can allocate memory dynamically as shown
below.

char* pvalue = NULL; // Pointer initialized with null

pvalue = new char[20]; // Request memory for the variable

To remove the array that we have just created the statement would look like this −

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 53 S.GNANAPRASANNA, Asst Professor

delete [] pvalue; // Delete array pointed to by pvalue

Following the similar generic syntax of new operator, you can allocate for a multi-dimensional

array as follows −

double** pvalue = NULL; // Pointer initialized with null

pvalue = new double [3][4]; // Allocate memory for a 3x4 array

However, the syntax to release the memory for multi-dimensional array will still remain same as

above −

delete [] pvalue; // Delete array pointed to by pvalue

Dynamic Memory Allocation for Objects

Objects are no different from simple data types. For example, consider the following code where

we are going to use an array of objects to clarify the concept −

#include <iostream>

using namespace std;

class Box {

public:

Box() {

cout << "Constructor called!" <<endl;

}

~Box() {

cout << "Destructor called!" <<endl;

}

};

int main() {

Box* myBoxArray = new Box[4];

delete [] myBoxArray; // Delete array

return 0;

}

If you were to allocate an array of four Box objects, the Simple constructor would be called four

times and similarly while deleting these objects, destructor will also be called same number of

times.

If we compile and run above code, this would produce the following result −

Constructor called!

Constructor called!

Constructor called!

Constructor called!

Destructor called!

Destructor called!

Destructor called!

Destructor called!

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 54 S.GNANAPRASANNA, Asst Professor

Preprocessor directives: The preprocessors are the directives, which give instructions to the
compiler to preprocess the information before actual compilation starts.

All preprocessor directives begin with #, and only white-space characters may appear before a

preprocessor directive on a line. Preprocessor directives are not C++ statements, so they do not

end in a semicolon (;).

You already have seen a #include directive in all the examples. This macro is used to include a

header file into the source file.

There are number of preprocessor directives supported by C++ like #include, #define, #if, #else,

#line, etc. Let us see important directives −

The #define Preprocessor

The #define preprocessor directive creates symbolic constants. The symbolic constant is called

a macro and the general form of the directive is −

#define macro-name replacement-text

When this line appears in a file, all subsequent occurrences of macro in that file will be replaced

by replacement-text before the program is compiled. For example −

#include <iostream>
using namespace std;

#define PI 3.14159

int main () {

cout << "Value of PI :" << PI << endl;

return 0;

}

Now, let us do the preprocessing of this code to see the result assuming we have the source code

file. So let us compile it with -E option and redirect the result to test.p. Now, if you check test.p,

it will have lots of information and at the bottom, you will find the value replaced as follows −

$gcc -E test.cpp > test.p

...

int main () {

cout << "Value of PI :" << 3.14159 << endl;

return 0;

}

Function-Like Macros

You can use #define to define a macro which will take argument as follows −

#include <iostream>

using namespace std;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 55 S.GNANAPRASANNA, Asst Professor

#define MIN(a,b) (((a)<(b)) ? a : b)

int main () {

int i, j;

i = 100;

j = 30;

cout <<"The minimum is " << MIN(i, j) << endl;

return 0;

}

If we compile and run above code, this would produce the following result −

The minimum is 30

Conditional Compilation

There are several directives, which can be used to compile selective portions of your program's

source code. This process is called conditional compilation.

The conditional preprocessor construct is much like the ‘if’ selection structure. Consider the

following preprocessor code −

#ifndef NULL

#define NULL 0

#endif

You can compile a program for debugging purpose. You can also turn on or off the debugging

using a single macro as follows −

#ifdef DEBUG

cerr <<"Variable x = " << x << endl;

#endif

This causes the cerr statement to be compiled in the program if the symbolic constant DEBUG

has been defined before directive #ifdef DEBUG. You can use #if 0 statment to comment out a

portion of the program as follows −

#if 0

code prevented from compiling

#endif

Let us try the following example −

#include <iostream>

using namespace std;
#define DEBUG

#define MIN(a,b) (((a)<(b)) ? a : b)

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 56 S.GNANAPRASANNA, Asst Professor

int main () {

int i, j;

i = 100;

j = 30;

#ifdef DEBUG

cerr <<"Trace: Inside main function" << endl;
#endif

#if 0

/* This is commented part */

cout << MKSTR(HELLO C++) << endl;

#endif

cout <<"The minimum is " << MIN(i, j) << endl;

#ifdef DEBUG

cerr <<"Trace: Coming out of main function" << endl;

#endif

return 0;

}

If we compile and run above code, this would produce the following result −

The minimum is 30

Trace: Inside main function
Trace: Coming out of main function

The # and ## Operators

The # and ## preprocessor operators are available in C++ and ANSI/ISO C. The # operator
causes a replacement-text token to be converted to a string surrounded by quotes.

Consider the following macro definition −

#include <iostream>

using namespace std;

#define MKSTR(x) #x

int main () {

cout << MKSTR(HELLO C++) << endl;

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 57 S.GNANAPRASANNA, Asst Professor

If we compile and run above code, this would produce the following result −

HELLO C++

Let us see how it worked. It is simple to understand that the C++ preprocessor turns the line −

cout << MKSTR(HELLO C++) << endl;

Above line will be turned into the following line −

cout << "HELLO C++" << endl;

The ## operator is used to concatenate two tokens. Here is an example −

#define CONCAT(x, y) x ## y

When CONCAT appears in the program, its arguments are concatenated and used to replace the

macro. For example, CONCAT(HELLO, C++) is replaced by "HELLO C++" in the program as

follows.

#include <iostream>

using namespace std;

#define concat(a, b) a ## b
int main() {

int xy = 100;

cout << concat(x, y);

return 0;

}

If we compile and run above code, this would produce the following result −

100

Let us see how it worked. It is simple to understand that the C++ preprocessor transforms −

cout << concat(x, y);

Above line will be transformed into the following line −

cout << xy;

Predefined C++ Macros

C++ provides a number of predefined macros mentioned below −

Sr.No Macro & Description

1
LINE

This contains the current line number of the program when it is being compiled.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 58 S.GNANAPRASANNA, Asst Professor

2
FILE

This contains the current file name of the program when it is being compiled.

3
DATE

This contains a string of the form month/day/year that is the date of the
translation of the source file into object code.

4
TIME

This contains a string of the form hour:minute:second that is the time at which the

program was compiled.

Let us see an example for all the above macros −

#include <iostream>
using namespace std;

int main () {

cout << "Value of LINE : " << LINE << endl;

cout << "Value of FILE : " << FILE << endl;

cout << "Value of DATE : " << DATE << endl;

cout << "Value of TIME : " << TIME << endl;

return 0;

}

If we compile and run above code, this would produce the following result −

Value of LINE : 6

Value of FILE : test.cpp
Value of DATE : Feb 28 2011

Value of TIME : 18:52:48

Unit-2

C++ Classes/Objects

C++ is an object-oriented programming language.

Everything in C++ is associated with classes and objects, along with its attributes and methods.

For example: in real life, a car is an object. The car has attributes, such as weight and color,

and methods, such as drive and brake.

Attributes and methods are basically variables and functions that belongs to the class. These are

often referred to as "class members".

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 59 S.GNANAPRASANNA, Asst Professor

A class is a user-defined data type that we can use in our program, and it works as an object
constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the class keyword:

class MyClass { // The class

public: // Access specifier

int myNum; // Attribute (int variable)

string myString; // Attribute (string variable)

};

Create an Object

In C++, an object is created from a class. We have already created the class named MyClass, so

now we can use this to create objects.

To create an object of MyClass, specify the class name, followed by the object name.

To access the class attributes (myNum and myString), use the dot syntax (.) on the object:

class MyClass { // The class

public: // Access specifier

int myNum; // Attribute (int variable)

string myString; // Attribute (string variable)

Example

Create a class called "MyClass":

Example explained

 The class keyword is used to create a class called MyClass.
 The public keyword is an access specifier, which specifies that members (attributes and

methods) of the class are accessible from outside the class. You will learn more

about access specifiers later.

 Inside the class, there is an integer variable myNum and a string variable myString. When

variables are declared within a class, they are called attributes.

 At last, end the class definition with a semicolon ;.

Example

Create an object called "myObj" and access the attributes:

https://www.w3schools.com/cpp/cpp_access_specifiers.asp

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 60 S.GNANAPRASANNA, Asst Professor

};

int main() {

MyClass myObj; // Create an object of MyClass

// Access attributes and set values

myObj.myNum = 15;

myObj.myString = "Some text";

// Print attribute values

cout << myObj.myNum << "\n";

cout << myObj.myString;

return 0;

}

Friends to a class

No one shares secrets with strangers for privacy reasons. But everyone has that one friend with

whom they share most of their secrets, if not all. Friend class in C++ refers to the same concept.

Public data members and functions are accessible by every class in C++ and many

other programming languages. But the C++ friend class is special and can access even the

private data members and functions of other classes.

Friend Keyword in C++

Now, you know the benefits of having a friend class in C++. But, to declare any class as a friend

class, you do it with the friend keyword. You can use the friend keyword to any class to declare

it as a friend class. This keyword enables any class to access private and protected members of

other classes and functions.

Use of Friend Class in C++

Friend class has numerous uses and benefits. Some of the primary use cases include:

 Accessing private and protected members of other classes (as you would know by now)

 Declaring all the functions of a class as friend functions

https://www.simplilearn.com/c-plus-plus-programming-for-beginners-article
https://www.simplilearn.com/best-programming-languages-start-learning-today-article

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 61 S.GNANAPRASANNA, Asst Professor

 Allowing to extend storage and access its part while maintaining encapsulation

 Enabling classes to share private members' information

 Widely used where two or more classes have interrelated data members

Understanding The Friend Class in C++ with Example Code

By SimplilearnLast updated on Sep 18, 202114555

Syntax of Implementing Friend Class in C++

The syntax for implementing a friend class is:

class ClassB;

class ClassA {

// ClassB is a friend class of ClassA

friend class ClassB;

...

}

class ClassB {

...

}

As you can see in the syntax, all you need to do is use the keyword friend in front of a class to

make it a friend class. Using this syntax will make ClassB a friend class of ClassA. Since ClassB

becomes the friend class, it will have access to all the public, private, and protected members of

ClassA. However, the opposite will not be true. That’s because C++ only allows granting the

friend relation and not taking it. Hence, ClassA will not have access to private members of

ClassB.

https://www.simplilearn.com/authors/simplilearn

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 62 S.GNANAPRASANNA, Asst Professor

Table of Contents

Friend Keyword in C++

Use of Friend Class in C++

Syntax of Implementing Friend Class in C++

Examples of Friend Class in C++

Friend Function in C++

View More

No one shares secrets with strangers for privacy reasons. But everyone has that one friend with

whom they share most of their secrets, if not all. Friend class in C++ refers to the same concept.

Public data members and functions are accessible by every class in C++ and many

other programming languages. But the C++ friend class is special and can access even the

private data members and functions of other classes.

Friend Keyword in C++

Now, you know the benefits of having a friend class in C++. But, to declare any class as a friend

class, you do it with the friend keyword. You can use the friend keyword to any class to declare

it as a friend class. This keyword enables any class to access private and protected members of

other classes and functions.

https://www.simplilearn.com/tutorials/cpp-tutorial/friend-class-in-cpp#friend_keyword_in_c
https://www.simplilearn.com/tutorials/cpp-tutorial/friend-class-in-cpp#use_of_friend_class_in_c
https://www.simplilearn.com/tutorials/cpp-tutorial/friend-class-in-cpp#syntax_of_implementing_friend_class_in_c
https://www.simplilearn.com/tutorials/cpp-tutorial/friend-class-in-cpp#examples_of_friend_class_in_c
https://www.simplilearn.com/tutorials/cpp-tutorial/friend-class-in-cpp#friend_function_in_c
https://www.simplilearn.com/c-plus-plus-programming-for-beginners-article
https://www.simplilearn.com/best-programming-languages-start-learning-today-article

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 63 S.GNANAPRASANNA, Asst Professor

Use of Friend Class in C++

Friend class has numerous uses and benefits. Some of the primary use cases include:

 Accessing private and protected members of other classes (as you would know by now)

 Declaring all the functions of a class as friend functions

 Allowing to extend storage and access its part while maintaining encapsulation

 Enabling classes to share private members' information

 Widely used where two or more classes have interrelated data members

Syntax of Implementing Friend Class in C++

The syntax for implementing a friend class is:

class ClassB;

class ClassA {

// ClassB is a friend class of ClassA

friend class ClassB;

}

class ClassB {

...

}

As you can see in the syntax, all you need to do is use the keyword friend in front of a class to

make it a friend class. Using this syntax will make ClassB a friend class of ClassA. Since ClassB

becomes the friend class, it will have access to all the public, private, and protected members of

ClassA. However, the opposite will not be true. That’s because C++ only allows granting the

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 64 S.GNANAPRASANNA, Asst Professor

friend relation and not taking it. Hence, ClassA will not have access to private members of

ClassB.

Examples of Friend Class in C++

}

};

Now that you have seen the syntax to implement a friend class in C++ and its use, look at some

examples to understand the concept better.

Example 1: A Simple Example to Access Private Members of Other Class

#include <iostream>

using namespace std;

class Exmp_A{

int i =3;

// Declaring the friend class

friend class Exmp_B;

};

class Exmp_B

{

public:

void display(Exmp_A &a)

{

cout<<"The value of i is : "<<a.i;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 65 S.GNANAPRASANNA, Asst Professor

int main(){

Exmp_A a;

Exmp_B b;

b.display(a);

return 0;

}

Output:

The value of i is 3

Implementing Friend Function in C++ Through a Method of Another Class

#include <iostream>

using namespace std;

class Exmp_A{

private:

int A_value;

public:

// Default Constructor

Exmp_A(){

A_value = 20;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 66 S.GNANAPRASANNA, Asst Professor

friend class Exmp_B; // Friend Class

};

class Exmp_B{

Output:

Welcome to Simplilearn!

private:

int B_value;

public:

// Accessing private members

void display(Exmp_A& i) {

cout<<"The private member's value accessed using friend class is: " << i.A_value<<endl;

}

};

int main(){

cout<<"Welcome to Simplilearn!"<<endl<<endl;

Exmp_A A_value;

Exmp_B B_value;

B_value.display(A_value);

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 67 S.GNANAPRASANNA, Asst Professor

The private member’s value accessed friend class is: 20

Implementing Friend Function in C++ Through a Global Function

#include <iostream>

using namespace std;

class Example{

// A private member by default

string s;

public:

friend void show(Example value);

void input(string val);

};

void Example::input(string val){

s = val;

}

void show(Example value){

cout<<"Value of private string data is : "<<value.s<<endl;

}

int main(){

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 68 S.GNANAPRASANNA, Asst Professor

cout<<"Welcome to Simplilearn!"<<endl<<endl;

Example value;

value.input("Simplilearn");

// Using friend function to display string

show(value);

return 0;

}

Static class members

We can define class members static using static keyword. When we declare a member of a class

as static it means no matter how many objects of the class are created, there is only one copy of

the static member.

A static member is shared by all objects of the class. All static data is initialized to zero when the

first object is created, if no other initialization is present. We can't put it in the class definition

but it can be initialized outside the class as done in the following example by redeclaring the

static variable, using the scope resolution operator :: to identify which class it belongs to.

Let us try the following example to understand the concept of static data members –

#include <iostream>

using namespace std;

class Box {

public:

static int objectCount;

// Constructor definition

Box(double l = 2.0, double b = 2.0, double h = 2.0) {
cout <<"Constructor called." << endl;

length = l;

breadth = b;

height = h;

// Increase every time object is created

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 69 S.GNANAPRASANNA, Asst Professor

objectCount++;

}

double Volume() {

return length * breadth * height;

}

private:
double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

};

// Initialize static member of class Box
int Box::objectCount = 0;

int main(void) {

Box Box1(3.3, 1.2, 1.5); // Declare box1
Box Box2(8.5, 6.0, 2.0); // Declare box2

// Print total number of objects.

cout << "Total objects: " << Box::objectCount << endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Constructor called.

Constructor called.
Total objects: 2

Static Function Members

By declaring a function member as static, you make it independent of any particular object of the
class. A static member function can be called even if no objects of the class exist and

the static functions are accessed using only the class name and the scope resolution operator ::.

A static member function can only access static data member, other static member functions and

any other functions from outside the class.

Static member functions have a class scope and they do not have access to the this pointer of the

class. You could use a static member function to determine whether some objects of the class

have been created or not.

Let us try the following example to understand the concept of static function members −

#include <iostream>

using namespace std;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 70 S.GNANAPRASANNA, Asst Professor

class Box {
public:

static int objectCount;

// Constructor definition

Box(double l = 2.0, double b = 2.0, double h = 2.0) {

cout <<"Constructor called." << endl;

length = l;

breadth = b;

height = h;

// Increase every time object is created

objectCount++;

}

double Volume() {

return length * breadth * height;

}

static int getCount() {

return objectCount;

}

private:

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

};

// Initialize static member of class Box

int Box::objectCount = 0;

int main(void) {

// Print total number of objects before creating object.

cout << "Inital Stage Count: " << Box::getCount() << endl;

Box Box1(3.3, 1.2, 1.5); // Declare box1
Box Box2(8.5, 6.0, 2.0); // Declare box2

// Print total number of objects after creating object.

cout << "Final Stage Count: " << Box::getCount() << endl;

return 0;

}

Output:

Inital Stage Count: 0
Constructor called.

Constructor called.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 71 S.GNANAPRASANNA, Asst Professor

A const member function can be called by any type of object. Non-const functions can be called

by non-const objects only.

Here is the syntax of const member function in C++ language,

datatype function_name const();

Here is an example of const member function in C++,

Example

#include<iostream>

using namespace std;

class Demo {

int val;

public:

Demo(int x = 0) {

val = x;

}

int getValue() const {

return val;

}

};

int main() {

const Demo d(28);

Demo d1(8);

cout << "The value using object d : " << d.getValue();

cout << "\nThe value using object d1 : " << d1.getValue();

return 0;

}

Final Stage Count: 2

Constant member functions

The const member functions are the functions which are declared as constant in the program.

The object called by these functions cannot be modified. It is recommended to use const

keyword so that accidental changes to object are avoided.

Output

The value using object d : 28

The value using object d1 : 8

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 72 S.GNANAPRASANNA, Asst Professor

Constructors and Destructors:

Providing the initial value as described in the earlier chapters of C++ does not conform to the

philosophy of C++. So C++ provides a special member function called the constructor which

enables an object to initialize itself at the time of its creation. This is known as automatic

initialization of objects. This concept of C++ also provides another member function called

destructor which is used to destroy the objects when they are no longer required. In this chapter,

you will learn about how constructors and destructors work, types of constructors and how they

can be implemented within C++ program.

The process of creating and deleting objects in C++ is a vital task. Each time an instance of a

class is created the constructor method is called. Constructors is a special member function of

class and it is used to initialize the objects of its class. It is treated as a special member function

because its name is the same as the class name. These constructors get invoked whenever an

object of its associated class is created. It is named as "constructor" because it constructs the

value of data member of a class. Initial values can be passed as arguments to the constructor

function when the object is declared.

This can be done in two ways:

 By calling constructor explicitly

 By calling constructor implicitly

The declaration and definition of constructor is as follows

syntax:

class class_name

{
int g, h;

public:

class_name(void); // Constructor Declared

. . .

};

class_name :: class_name()

{

g=1; h=2; // Constructor defined

}

Special characteristics of Constructors:

 They should be declared in the public section

 They do not have any return type, not even void

 They get automatically invoked when the objects are created

 They cannot be inherited though derived class can call the base class constructor

 Like other functions, they can have default arguments

 You cannot refer to their address

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 73 S.GNANAPRASANNA, Asst Professor

 Constructors cannot be virtual

C++ offers four types of constructors. These are:

1. Do nothing constructor

2. Default constructor

3. Parameterized constructor

4. Copy constructor

Do nothing Constructor

Do nothing constructors are that type of constructor which does not contain any statements. Do

nothing constructor is the one which has no argument in it and no return type.

Default Constructor

The default constructor is the constructor which doesn't take any argument. It has no parameter

but a programmer can write some initialization statement there.

Syntax:

class_name()

{

// Constructor Definition ;

}

//Code Snippet:

#include <iostream>

using namespace std;

class Calc {

int val;

public:

Calc()

{

val = 20;

}

};

int main()

{

Calc c1;

cout << c1.val;

}

A default constructor is very important for initializing object members, that even if we do not

define a constructor explicitly, the compiler automatically provides a default constructor

implicitly.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 74 S.GNANAPRASANNA, Asst Professor

Parameterized Constructor

A default constructor does not have any parameter, but programmers can add and use parameters

within a constructor if required. This helps programmers to assign initial values to an object at

the time of creation.

Example:

class-name (class-name &)

{

. . .

#include <iostream>

using namespace std;

class Calc

{

int val2;

public:

Calc(int x)

{

val2=x;

}

};

int main()

{

Calc c1(10);

Calc c2(20);

Calc c3(30);

cout << c1.val2;

cout << c2.val2;

cout << c3.val2;

}

Copy Constructor

C++ provides a special type of constructor which takes an object as an argument and is used to

copy values of data members of one object into another object. In this case, copy constructors are

used to declaring and initializing an object from another object.

Example:

Calc C2(C1);

Or

Calc C2 = C1;

The process of initializing through a copy constructor is called the copy initialization.

Syntax:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 75 S.GNANAPRASANNA, Asst Professor

}

Example:

#include <iostream>

using namespace std;

class CopyCon {
int a, b;

public:

CopyCon(int x, int y)

{
a = x;
b = y;

cout << "\nHere is the initialization of Constructor";

}

void Display()

{

cout << "\nValues : \t" << a << "\t" << b;

}

};

void main()

{

CopyCon Object(30, 40);
//Copy Constructor

CopyCon Object2 = Object;

Object.Display();

Object2.Display();

}

What are Destructors?

As the name implies, destructors are used to destroy the objects that have been created by the

constructor within the C++ program. Destructor names are same as the class name but they are

preceded by a tilde (~). It is a good practice to declare the destructor after the end of using

constructor. Here's the basic declaration procedure of a destructor:

destructor neither takes an argument nor returns any value and the compiler implicitly invokes

upon the exit from the program for cleaning up storage that is no longer accessible.

The base class members can be accessed by its sub-classes through access specifiers. There are

three types of access specifies. They are public, private and protected.

1. Public

When the base class is publicly inherited, the public members of the base class become the

derived class public members.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 76 S.GNANAPRASANNA, Asst Professor

Also read : Discuss the different parameter passing techniques

They can be accessed by the objects of the derived class.

Figure: Publicly Inherited Base Class

Syntax

class classname

{

public:

datatype variablename;

returntype functionname();

};

2. Protected

When the base class is derived in protected mode, the ‘protected’ and ‘public’ members of the

base class become the protected members of the derived class.

Also read :Write a C++ program to find out GCD of given two numbers using function

Private and protected members of a class can be accessed by,

(i) A friend function of the class.

(ii) A member function of the friend class.

(iii) A derived class member function.

http://estudies4you.blogspot.com/2020/06/discuss-different-parameter-passing-techniques-in-oops.html
http://estudies4you.blogspot.com/2020/06/write-a-program-to-find-out-gcd-of-given-two-numbers-using-functions-in-oops.html

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 77 S.GNANAPRASANNA, Asst Professor

Figure: Protected Derivation of the Base Class

3. Private

When a base class contains members, that are declared as private, they cannot be accessed by the

derived class objects. They can be accessed only by the class in which they are defined.

Figure: Privately inherited Base Class

Syntax

Also read :Explain the virtual functions call mechanism

class classname

{

private:

datatype variablename;

returntype functionname();

};

http://estudies4you.blogspot.com/2020/07/explain-virtual-functions-call-mechanism.html

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 78 S.GNANAPRASANNA, Asst Professor

{

public: pub()

{

cout << “In Public() \n”;

}

protected: prot()

{

cout << “In Protected() \n”;

}

private: priv()

{

cout << “In Pivate() \n”;

}

};

class C : public A

{

public:

void display1()

{

Program

#include <iostream>

using namespace std;

class A

cout<< “In C::display1 call\n”;

pub();

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 79 S.GNANAPRASANNA, Asst Professor

}

void display2()

{

cout << “In C::display2 call\n”;

prot();

}

/*pri(Q is a private member of class A. Therefore it is an illegal access

void display3()

{

cout<<“In C::display3 call\n”;

priv();

} */

}

main()

{

C obj;

obj.pub();

// obj.prot(); illegal because it is declared as protected in class A

// obj.private(); illegal because pri() isa private member of class A

obj.display1();

obj.display2();

}

Constructor and Destructor in Derived class in C++

We know that constructor is invoked implicitly when an object is created. But do you think what

will happen when we create object of derived class?

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 80 S.GNANAPRASANNA, Asst Professor

1. In inheritance, When an object of derived class is created then constructor of derived class get

executed and then it calls the constructor of base class.

2. If there is no default constructor present in parent class then not only we have to create

constructor in child class but also we will have to call the constructor of parent class.

3. In order to call parameterized constructor of parent class, we need to create a constructor in

child class and also we will have to call parameterized constructor with the help of child class

constructor

Syntax of calling parent class constructor using child class constructor

For Example:-

class A

{

int a;

public:

class A

{

public:

A() {

//constructor body

} };

class B: public A {

public:

B(): A() {

//constructor body

}

};

https://www.mylearningmania.com/2021/02/inheritance-in-cpp.html
https://www.mylearningmania.com/2021/02/cpp-derived-constructor-destructor.html

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 81 S.GNANAPRASANNA, Asst Professor

A (int k) //parameterized constructor of parent class.

{

a = k;

}

};

class B: public A

{

int b;

public:

B(int x, int y):A(x) //constructor of child class calling constructor of base class.

{

b = y;

}

};

int main()

{

B obj(2,3);

}

Points to Remember:-

1. In inheritance, the order of constructors calling is: from child class to parent class (child -

> parent).

2. In inheritance, the order of constructors execution is: from parent class to child class (parent -

> class).

3. In inheritance, the order of destructors calling is: from child class to parent class (child -

> parent).

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 82 S.GNANAPRASANNA, Asst Professor

4. In inheritance, the order of destructors execution is: from child class to parent class (child -

> parent).

For Example:- Destructor Example

#include<iostream>

using namespace std;

class baseClass

{

public:

baseClass()

{

cout << "I am baseClass constructor" << endl;

}

~baseClass()

{

cout << "I am baseClass destructor" << endl;

}

};

class derivedClass: public baseClass

{

public:

derivedClass()

{

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 83 S.GNANAPRASANNA, Asst Professor

Data abstraction refers to providing only essential information to the outside world and hiding

their background details, i.e., to represent the needed information in program without presenting

the details.

Data abstraction is a programming (and design) technique that relies on the separation of

interface and implementation.

Let's take one real life example of a TV, which you can turn on and off, change the channel,

adjust the volume, and add external components such as speakers, VCRs, and DVD players,

BUT you do not know its internal details, that is, you do not know how it receives signals over

the air or through a cable, how it translates them, and finally displays them on the screen.

Thus, we can say a television clearly separates its internal implementation from its external

interface and you can play with its interfaces like the power button, channel changer, and volume

control without having any knowledge of its internals.

In C++, classes provides great level of data abstraction. They provide sufficient public methods

to the outside world to play with the functionality of the object and to manipulate object data,

i.e., state without actually knowing how class has been implemented internally.

cout << "I am derivedClass constructor" << endl;

}

~derivedClass()

{

cout <<" I am derivedClass destructor" << endl;

}

};

int main()

{

derivedClass D;

return 0;

}

Data abstraction

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 84 S.GNANAPRASANNA, Asst Professor

For example, your program can make a call to the sort() function without knowing what

algorithm the function actually uses to sort the given values. In fact, the underlying

implementation of the sorting functionality could change between releases of the library, and as

long as the interface stays the same, your function call will still work.

In C++, we use classes to define our own abstract data types (ADT). You can use the cout object

of class ostream to stream data to standard output like this −

#include <iostream>

using namespace std;

int main() {

cout << "Hello C++" <<endl;

return 0;

}

Here, you don't need to understand how cout displays the text on the user's screen. You need to

only know the public interface and the underlying implementation of ‘cout’ is free to change.

Access Labels Enforce Abstraction

In C++, we use access labels to define the abstract interface to the class. A class may contain

zero or more access labels −

 Members defined with a public label are accessible to all parts of the program. The data-

abstraction view of a type is defined by its public members.

 Members defined with a private label are not accessible to code that uses the class. The

private sections hide the implementation from code that uses the type.

There are no restrictions on how often an access label may appear. Each access label specifies

the access level of the succeeding member definitions. The specified access level remains in

effect until the next access label is encountered or the closing right brace of the class body is

seen.

Benefits of Data Abstraction

Data abstraction provides two important advantages −

 Class internals are protected from inadvertent user-level errors, which might corrupt the

state of the object.

 The class implementation may evolve over time in response to changing requirements or

bug reports without requiring change in user-level code.

By defining data members only in the private section of the class, the class author is free to make

changes in the data. If the implementation changes, only the class code needs to be examined to

see what affect the change may have. If data is public, then any function that directly access the

data members of the old representation might be broken.

Data Abstraction Example

Any C++ program where you implement a class with public and private members is an example

of data abstraction. Consider the following example −

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 85 S.GNANAPRASANNA, Asst Professor

#include <iostream>
using namespace std;

class Adder {

public:

// constructor

Adder(int i = 0) {

total = i;

}

// interface to outside world

void addNum(int number) {

total += number;

}

// interface to outside world

int getTotal() {

return total;

};

private:

// hidden data from outside world

int total;

};

int main() {

Adder a;

a.addNum(10);

a.addNum(20);

a.addNum(30);

cout << "Total " << a.getTotal() <<endl;
return 0;

}

Output:

Total 60

Above class adds numbers together, and returns the sum. The public members -

addNum and getTotal are the interfaces to the outside world and a user needs to know them to

use the class. The private member total is something that the user doesn't need to know about,

but is needed for the class to operate properly.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 86 S.GNANAPRASANNA, Asst Professor

Triangle(...) public:

Abstract Data Types in C++

Now that we’ve seen the concept of abstract data types (ADTs), we proceed to examine the

mechanisms C++ provides for defining an ADT. Unlike C, C++ allows the data and functions of

an ADT to be defined together. It also enables an ADT to prevent access to internal

implementation details, as well as to guarantee that an object is appropriately initialized when it

is created.

Our convention in this course is to use the word struct to refer to C-style ADTs, as well as to use

the struct keyword to define them. We use the word class to refer to C++ ADTs and use

the class keyword to define them. We will discuss the technical difference between the two

keywords momentarily.

A C++ class includes both member variables, which define the data representation, as well

as member functions that operate on the data. The following is a Triangle class in the C++ style:

class Triangle {

double a;

double b;

double c;

public:

Triangle(double a_in, double b_in, double c_in);

double perimeter() const {

return this->a + this->b + this->c;

}

void scale(double s) {

this->a *= s;

this->b *= s;

this->c *= s;

}

};

The class has member variables for the length of each side, defining the data representation. We

defer discussion of the and lines for now. Below those lines are member

functions for computing the perimeter of a triangle and scaling it by a factor.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 87 S.GNANAPRASANNA, Asst Professor

The following is an example of creating and using a Triangle object:

int main() {

Triangle t1(3, 4, 5);
t1.scale(2);

cout << t1.perimeter() << endl;

}

We initialize a triangle by passing in the side lengths as part of its declaration. We can then scale

a triangle by using the same dot syntax we saw for accessing a member

variable: <object>.<function>(<arguments>) .

Before we discuss the details of what the code is doing, let us compare elements of the C-style

definition and use of the triangle ADT with the C++ version. The following contrasts the

definition of an ADT function between the two styles:

C-Style Struct C++ Class

void Triangle_scale(Triangle *tri,

double s) {
tri->a *= s;

tri->b *= s;

tri->c *= s;

}

class Triangle {

void scale(double s) {
this->a *= s;

this->b *= s;

this->c *= s;

}

};

With the C-style struct, we defined a top-level Triangle_scale() function whose first argument is

a pointer to the Triangle object we want to scale. With a C++ class, on the other hand, we

define a scale() member function within the Triangle class itself. There is no need to

prepend Triangle_ , since it is clear that scale() is a member of the class. The member

function also does not explicitly declare a pointer parameter – instead, the C++ language adds

an implicit this parameter that is a pointer to the object we are working on. We can

then use the this pointer in the same way we used the explicit tri pointer in the C style.

Triangle

Triangle

The following compares how objects are created and manipulated:

C++ Class C-Style Struct

Triangle t1;

Triangle_init(&t1, 3, 4, 5);

Triangle_scale(&t1, 2);

Triangle t1(3, 4, 5);

t1.scale(2);

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 88 S.GNANAPRASANNA, Asst Professor

As for using a Triangle object, in the C style, we had to separately create the Triangle object

and then initialize it with a call to Triangle_init() . In the C++ style, object creation and

initialization are combined – we will see how later. When invoking an ADT function, in the C

case we have to explicitly pass the address of the object we are working on. With the C++

syntax, the object is part of the syntax – it appears on the left-hand side of the dot, so the

compiler automatically passes its address as the this pointer of the scale() member function.

Member Accessibility

The data representation of an ADT is usually an implementation detail (plain old data being an

exception). With C-style structs, however, we have to rely on programmers to respect convention

and avoid accessing member variables directly. With C++ classes, the language provides us a

mechanism for enforcing this convention: declaring members as private prevents access from

outside the class, while declaring them as public allows outside access. 1 We give a set of

members a particular access level by placing private: or public: before the members – that

access level applies to subsequent members until a new access specifier is encountered, and any

number of specifiers may appear in a class. The following is an example:

1

Later, we will discuss protected members that are accessible to derived classes. This

access level, however, is rarely used.

class Triangle {

private:
double a;

double b;

double c;

public:

Triangle(double a_in, double b_in, double c_in);

double perimeter() const {

return a + b + c;

}

void scale(double s) {

a *= s;

b *= s;

c *= s;

}

};

https://eecs280staff.github.io/notes/07_ADTs_in_C.html#plain-old-data
https://eecs280staff.github.io/notes/08_ADTs_in_C%2B%2B.html#id3
https://eecs280staff.github.io/notes/08_ADTs_in_C%2B%2B.html#id2

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 89 S.GNANAPRASANNA, Asst Professor

struct

In this example, the members a , b , and c are declared as private,

while Triangle() , perimeter() , and scale() are declared as public. Private members, whether

variables or functions, can be accessed from within the class, even if they are members of a

different object of that class. They cannot be accessed from outside the class:

int main() {

Triangle t1(3, 4, 5); // OK: Triangle() is public

t1.scale(2); // OK: scale() is public

cout << t1.perimeter() << endl; // OK: perimeter() is public

// Die triangle! DIE!

t1.a = -1;

}

// ERROR: a is private

With the class keyword, the default access level is private. Thus, the at the beginning

of the Triangle definition is redundant, and the following is equivalent:

class Triangle {

double a;

double b;

double c;

public:

Triangle(double a_in, double b_in, double c_in);

...

};

We have seen previously that members declared within a

struct. In fact, the only difference between the and

struct

class

are accessible from outside the

keywords when defining a class

type is the default access level: public for struct but private for class . 2 However, we use the

two keywords for different conventions in this course.

Figure 43 Memory layout when scaling a triangle in the C and C++ styles.

The following contrasts the definitions of a function that treats the ADT object as const:

C-Style Struct C++ Class

double Triangle_perimeter(

const Triangle *tri) {

return tri->a +

tri->b +

class Triangle {

double perimeter() const {

return this->a +

this->b +

private:

https://eecs280staff.github.io/notes/08_ADTs_in_C%2B%2B.html#id5

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 90 S.GNANAPRASANNA, Asst Professor

tri

const

In the C style, we add the keyword to the left of the when declaring the explicit pointer

parameter, resulting in being a pointer to const. In the C++ style, we don’t have an explicit

parameter where we can add the keyword. Instead, we place the keyword after the

parameter list for the function. The compiler will then make the implicit this parameter a

pointer to const, as if it were declared with the type

member function on a const Triangle :

const Triangle * . This allows us to call the

const Triangle t1(3, 4, 5);

cout << t1.perimeter() << endl; // OK: this pointer is a pointer to const

t1.scale(2); // ERROR: conversion from const to non-const

As with accessing member variables, we can use the arrow operator to invoke a member function

through a pointer:

Triangle t1(3, 4, 5);

const Triangle *ptr = &t1;

cout << ptr->perimeter() << endl; // OK: this pointer is a pointer to const

ptr->scale(2); // ERROR: conversion from const to non-const

Implicit

Since member variables and member functions are both located within the scope of a class, C++

allows us to refer to members from within a member function without the explicit

The compiler automatically inserts the member dereference for us:

syntax.

class Triangle {

double a;

double b;

double c;

...

double perimeter() const {

return a + b + c; // Equivalent to: this->a + this->b + this->c

}

};

This is also the case for invoking other member functions. For instance, the following defines

and uses functions to get each side length:

C++ Class C-Style Struct

* const

}

};

this->

this->

}
tri->c; this->c;

https://eecs280staff.github.io/notes/08_ADTs_in_C%2B%2B.html#functions-to-get

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 91 S.GNANAPRASANNA, Asst Professor

a

a

this->

class Triangle {

double a;

double b;

double c;

...

double side1() const {

return a;

}

double side2() const {

return b;

}

double side3() const {

return c;

}

double perimeter() const {

return side1() + side2() + side3();

// Equivalent to: this->side1() + this->side2() + this->side3()

}

};

In both cases, the compiler can tell that we are referring to members of the class and therefore

inserts the this-> . However, if there are names in a closer scope that conflict with the member

names, we must use ourselves. The following is an example:

class Triangle {

double a;

...

double set_side1(double a) {

this->a = a;

}

};

Here, the unqualified refers to the parameter a , since it is declared in a narrower scope than

the member variable. We can still refer to the member by qualifying its name with this-> .

In general, we should avoid declaring variables in a local scope that hide names in an outer

scope. Doing so in a constructor or set function is often considered acceptable, but it should be

avoided elsewhere.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 92 S.GNANAPRASANNA, Asst Professor

 Encapsulation

 Abstraction

 Data Hiding

Encapsulation, abstraction & data hiding is closely related to each other. When we talk about any

C++ program, it consists of two fundamental elements:

 Program statements – Part of the program (functions) that performs actions.

 Program data – Data in the program which is manipulated using functions.

Encapsulation

Encapsulation binds the data & functions together which keeps both safe from outside

interference. Data encapsulation led to data hiding.

Let’s look at an example of encapsulation. Here, we are specifying the getter & setter function to

get & set the value of variable num without accessing it directly.

Example:

Information hiding:

In simple words, data hiding is an object-oriented programming technique of hiding internal

object details i.e. data members. Data hiding guarantees restricted data access to class members

& maintain object integrity. In this blog, we will understand how data hiding works in

C++. Following topics are covered in this tutorial:

1

2

3

4

5

6

7

8

9

10

11

#include<iostream>

using namespace std;

class Encapsulation

{

private:

// data hidden from outside world

int num;

public:

// function to set value of

https://www.edureka.co/blog/data-hiding-in-cpp/#encapsulation
https://www.edureka.co/blog/data-hiding-in-cpp/#abstraction
https://www.edureka.co/blog/data-hiding-in-cpp/#datahiding
https://www.edureka.co/blog/object-oriented-programming-in-cpp/#Encapsulation
https://www.edureka.co/blog/object-oriented-programming-in-cpp/

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 93 S.GNANAPRASANNA, Asst Professor

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Output:

// variable x

void set(int a)

{

num =a;

}

// function to return value of

// variable x

int get()

{

return num;

}

};

// main function

int main()

{

Encapsulation obj;

obj.set(5);

cout<<obj.get();

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 94 S.GNANAPRASANNA, Asst Professor

Data Abstraction

Data Abstraction is a mechanism of hiding the implementation from the user & exposing the

interface.

Example:

1 #include <iostream>

2 using namespace std;

3

4 class Abstraction

5 {

6 private:

7 int num1, num2;

8

9 public:

10

11 void set(int a, int b)

12 {

13 num1 = a;

14 num2 = b;

15 }

16

https://www.edureka.co/blog/object-oriented-programming-in-cpp/#Abstraction

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 95 S.GNANAPRASANNA, Asst Professor

17

18

19

20

21

22

23

24

25

26

27

28

29

30

void display()

{

cout<<"num1 = " <<num1 << endl;

cout<<"num2 = " << num2 << endl;

}

};

int main()

{

Abstraction obj;

obj.set(50, 100);

obj.display();

return 0;

}

Output:

Data Hiding in C++

Data hiding is a process of combining data and functions into a single unit. The ideology behind

data hiding is to conceal data within a class, to prevent its direct access from outside the class. It

helps programmers to create classes with unique data sets and functions, avoiding unnecessary

penetration from other program classes.

Discussing data hiding & data encapsulation, data hiding only hides class data components,

whereas data encapsulation hides class data parts and private methods.

Now you also need to know access specifier for understanding data hiding.

private, public & protected are three types of protection/ access specifiers available within a

class. Usually, the data within a class is private & the functions are public. The data is hidden, so

that it will be safe from accidental manipulation.

 Private members/methods can only be accessed by methods defined as part of the class.

Data is most often defined as private to prevent direct outside access from other classes.

Private members can be accessed by members of the class.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 96 S.GNANAPRASANNA, Asst Professor

Now let’s look at a data hiding example.

Example: Data Hiding in C++

 Public members/methods can be accessed from anywhere in the program. Class

methods are usually public which is used to manipulate the data present in the class. As a

general rule, data should not be declared public. Public members can be accessed by

members and objects of the class.

 Protected member/methods are private within a class and are available for private

access in the derived class.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#include<iostream>

using namespace std;

class Base{

int num; //by default private

public:

void read();

void print();

};

void Base :: read(){

cout<<"Enter any Integer value"<<endl; cin>>num;

}

void Base :: print(){

cout<<"The value is "<<num<<endl;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 97 S.GNANAPRASANNA, Asst Professor

20 }

21

22 int main(){

23 Base obj;

24

25 obj.read();

26 obj.print();

27

28 return 0;

29 }

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 98 S.GNANAPRASANNA, Asst Professor

Defining a class hierarchy:

Unit-3

Hierarchical Inheritance in C++ refers to the type of inheritance that has a hierarchical structure

of classes. A single base class can have multiple derived classes, and other subclasses can further

inherit these derived classes, forming a hierarchy of classes. The following diagram illustrates

the structure of Hierarchical Inheritance in C++.

Now, understand Hierarchical Inheritance in C++ with the help of an example. There are 3 major

branches derived from modern science. They are- Physics, Chemistry, and Biology. These 3

branches are further divided into sub-branches, which are further classified into other specialized

disciplines. Here, Modern Science is the base class which is further inherited by 3 subclasses-

Physics, Chemistry, and Biology. And these subclasses are further inherited by other derived

classes, structuring into a hierarchy of classes.

Use of Hierarchical Inheritance in C++

Hierarchical Inheritance in C++ is useful in the cases where a hierarchy has to be maintained.

Most of the schools and colleges maintain the data of their students in hierarchical form. For

example, a college has to maintain the data of the engineering students and segregate them

according to their branches such as the IT branch, mechanical branch, and so on. You can

achieve such a scenario can by Hierarchical Inheritance in C++ easily. Similar is the case with

the companies where they have to maintain the data of their employees according to the different

departments.

Syntax to Implement Hierarchical Inheritance in C++

You can use the following syntax to achieve Hierarchical Inheritance in C++:

class base_class

{

//data members

//member functions

};

class derived_class1 : visibility_mode base_class

https://www.simplilearn.com/tutorials/cpp-tutorial

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 99 S.GNANAPRASANNA, Asst Professor

{

//data members

//member functions

};

class derived_class2 : visibility_mode base_class

{

//data members

//member functions

};

Different forms of Inheritance

Inheritance is one of four pillars of Object-Oriented Programming (OOPs). It is a feature that

enables a class to acquire properties and characteristics of another class. Inheritance allows you

to reuse your code since the derived class or the child class can reuse the members of the base

class by inheriting them. Consider a real-life example to clearly understand the concept of

inheritance. A child inherits some properties from his/her parents, such as the ability to speak,

walk, eat, and so on. But these properties are not especially inherited in his parents only. His

parents inherit these properties from another class called mammals. This mammal class again

derives these characteristics from the animal class. Inheritance works in the same manner.

During inheritance, the data members of the base class get copied in the derived class and can be

accessed depending upon the visibility mode used. The order of the accessibility is always in a

decreasing order i.e., from public to protected. There are mainly five types of Inheritance

in C++ that you will explore in this article. They are as follows:

 Single Inheritance

 Multiple Inheritance

 Multilevel Inheritance

 Hierarchical Inheritance

 Hybrid Inheritance

https://www.simplilearn.com/tutorials/java-tutorial/oops-interview-questions
https://www.simplilearn.com/tutorials/cpp-tutorial/classes-in-cpp
https://www.simplilearn.com/tutorials/cpp-tutorial/learn-cpp-basics

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 100 S.GNANAPRASANNA, Asst Professor

What Are Child and Parent classes?

To clearly understand the concept of Inheritance, you must learn about two terms

on which the whole concept of inheritance is based - Child class and Parent class.

 Child class: The class that inherits the characteristics of another class is known as the child class or
derived class. The number of child classes that can be inherited from a single parent class is based
upon the type of inheritance. A child class will access the data members of the parent class according
to the visibility mode specified during the declaration of the child class.

 Parent class: The class from which the child class inherits its properties is called the parent class or

base class. A single parent class can derive multiple child classes (Hierarchical Inheritance) or
multiple parent classes can inherit a single base class (Multiple Inheritance). This depends on the

different types of inheritance in C++.

The syntax for defining the child class and parent class in all types of Inheritance in C++ is given

below:

class parent_class

{

//class definition of the parent class

};

class child_class : visibility_mode parent_class

{

//class definition of the child class

};

Syntax Description

 parent_class: Name of the base class or the parent class.

 child_class: Name of the derived class or the child class.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 101 S.GNANAPRASANNA, Asst Professor

 visibility_mode: Type of the visibility mode (i.e., private, protected, and public) that specifies how the

data members of the child class inherit from the parent class.

Why and When to Use Inheritance?

Inheritance makes the programming more efficient and is used because of the benefits it

provides. The most important usages of inheritance are discussed below:

1. Code reusability: One of the main reasons to use inheritance is that you can reuse the code. For

example, consider a group of animals as separate classes - Tiger, Lion, and Panther. For these classes,
you can create member functions like the predator() as they all are predators, canine() as they all have

canine teeth to hunt, and claws() as all the three animals have big and sharp claws. Now, since all the

three functions are the same for these classes, making separate functions for all of them will cause data
redundancy and can increase the chances of error. So instead of this, you can use inheritance here.

You can create a base class named carnivores and add these functions to it and inherit these functions

to the tiger, lion, and panther classes.

2. Transitive nature: Inheritance is also used because of its transitive nature. For example, you have a

derived class mammal that inherits its properties from the base class animal. Now, because of the
transitive nature of the inheritance, all the child classes of ‘mammal’ will inherit the properties of the

class ‘animal’ as well. This helps in debugging to a great extent. You can remove the bugs from your

base class and all the inherited classes will automatically get debugged.

Types of inheritance in C++

There are five types of inheritance in C++ based upon how the derived class inherits its

features from the base class. These five types are as follows:

 Single Inheritance

Single Inheritance is the most primitive among all the types of inheritance in C++. In this

inheritance, a single class inherits the properties of a base class. All the data members of the base

class are accessed by the derived class according to the visibility mode (i.e., private, protected,

and public) that is specified during the inheritance.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 102 S.GNANAPRASANNA, Asst Professor

Syntax

class base_class_1

{ // class definition

electronicDevice()

{

};

class derived_class: visibility_mode base_class_1

{ // class definition

};

Description

A single derived_class inherits a single base_class. The visibility_mode is specified while

declaring the derived class to specify the control of base class members within the derived class.

Example

The following example illustrates Single Inheritance in C++:

#include <iostream>

using namespace std;

// base class

class electronicDevice

{

public:

// constructor of the base class

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 103 S.GNANAPRASANNA, Asst Professor

cout << "I am an electronic device.\n\n";

}

};

return 0;

}

// derived class

class Computer: public electronicDevice

{

public:

// constructor of the derived class

Computer()

{

cout << "I am a computer.\n\n";

}

};

int main()

{

// create object of the derived class

Computer obj; // constructor of base class and

// derived class will be called

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 104 S.GNANAPRASANNA, Asst Professor

In the above example, the subclass Computer inherits the base class electronicDevice in a public

mode. So, all the public and protected member functions and data members of the class

electronicDevice are directly accessible to the class Computer. Since there is a single derived

class inheriting a single base class, this is Single Inheritance.

 Multiple Inheritance

The inheritance in which a class can inherit or derive the characteristics of multiple classes, or a

derived class can have over one base class, is known as Multiple Inheritance. It specifies access

specifiers separately for all the base classes at the time of inheritance. The derived class can

derive the joint features of all these classes and the data members of all the base classes are

accessed by the derived or child class according to the access specifiers.

Syntax

class base_class_1

{

// class definition

};

class base_class_2

{

// class definition

};

class derived_class: visibility_mode_1 base_class_1, visibility_mode_2 base_class_2

{

// class definition

};

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 105 S.GNANAPRASANNA, Asst Professor

The following example illustrates Multiple Inheritance in C++:

#include <iostream>

using namespace std;

// class_A

class electronicDevice

{

public:

// constructor of the base class 1

electronicDevice()

{

cout << "I am an electronic device.\n\n";

}

};

// class_B

class Computer

Description

The derived_class inherits the characteristics of two base classes, base_class_1 and

base_class_2. The visibility_mode is specified for each base class while declaring a derived

class. These modes can be different for every base class.

{

public:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 106 S.GNANAPRASANNA, Asst Professor

// constructor of the base class 2

Computer()

{

The inheritance in which a class can be derived from another derived class is known as

Multilevel Inheritance. Suppose there are three classes A, B, and C. A is the base class that

derives from class B. So, B is the derived class of A. Now, C is the class that is derived from

cout << "I am a computer.\n\n";

}

};

// class_C inheriting class_A and class_B

class Linux_based : public electronicDevice, public Computer

{};

int main()

{

// create object of the derived class

Linux_based obj; // constructor of base class A,

// base class B and derived class

// will be called

return 0;

}

 Multilevel Inheritance

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 107 S.GNANAPRASANNA, Asst Professor

class B. This makes class B, the base class for class C but is the derived class of class A. This

scenario is known as the Multilevel Inheritance. The data members of each respective base class

are accessed by their respective derived classes according to the specified visibility modes.

Syntax

The following example illustrates Multilevel Inheritance in C++:

#include <iostream>

class class_A

{

// class definition

};

class class_B: visibility_mode class_A

{

// class definition

};

class class_C: visibility_mode class_B

{

// class definition

};

Description

The class_A is inherited by the sub-class class_B. The class_B is inherited by the subclass

class_C. A subclass inherits a single class in each succeeding level.

Example

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 108 S.GNANAPRASANNA, Asst Professor

using namespace std;

// class_A

class electronicDevice

cout << "I am a computer.\n\n";

}

{

public:

// constructor of the base class 1

electronicDevice()

{

cout << "I am an electronic device.\n\n";

}

};

// class_B inheriting class_A

class Computer: public electronicDevice

{

public:

// constructor of the base class 2

Computer()

{

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 109 S.GNANAPRASANNA, Asst Professor

};

// class_C inheriting class_B

class Linux_based : public Computer

{

public:

// constructor of the derived class

Linux_based()

{

cout << "I run on Linux.\n\n";;

}

};

int main()

{

// create object of the derived class

Linux_based obj; // constructor of base class 1,

// base class 2, derived class will be called

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 110 S.GNANAPRASANNA, Asst Professor

In the above example, the base class electronicDevice is inherited by the subclass Computer

which is further inherited by the subclass Linux_based. Since one class is inherited by a single

class at each level, it is Multilevel Inheritance. The object of the derived class Linux_based can

access the members of the class electronicDevice and Computer directly.

 Hierarchical Inheritance

The inheritance in which a single base class inherits multiple derived classes is known as the

Hierarchical Inheritance. This inheritance has a tree-like structure since every class acts as a base

class for one or more child classes. The visibility mode for each derived class is specified

separately during the inheritance and it accesses the data members accordingly.

Syntax

class class_A

{

// class definition

};

class class_B: visibility_mode class_A

{

// class definition

};

class class_C : visibility_mode class_A

{

// class definition

};

class class_D: visibility_mode class_B

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 111 S.GNANAPRASANNA, Asst Professor

{

// class definition

};

electronicDevice()

{

class class_E: visibility_mode class_C

{

// class definition

};

Description

The subclasses class_B and class_C inherit the attributes of the base class class_A. Further, these

two subclasses are inherited by other subclasses class_D and class_E respectively.

Example

The following example illustrates Hierarchical Inheritance in C++:

#include <iostream>

using namespace std;

// base class

class electronicDevice

{

public:

// constructor of the base class 1

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 112 S.GNANAPRASANNA, Asst Professor

cout << "I am an electronic device.\n\n";

}

};

// derived class inheriting base class

class Computer: public electronicDevice

{};

// derived class inheriting base class

class Linux_based : public electronicDevice

{};

int main()

{

// create object of the derived classes

Computer obj1; // constructor of base class will be called

Linux_based obj2; // constructor of base class will be called

return 0;

}

In the above example, the base class electronicDevice is inherited by two subclasses Computer

and Linux_based. The class structure represents Hierarchical Inheritance. Both the derived

classes can access the public members of the base class electronicDevice. When it creates objects

of these two derived classes, it calls the constructor of the base class for both objects.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

{

EEE,NRCM Page 113 S.GNANAPRASANNA, Asst Professor

 Hybrid Inheritance

Hybrid Inheritance, as the name suggests, is the combination of two or over two types of

inheritances. For example, the classes in a program are in such an arrangement that they show

both single inheritance and hierarchical inheritance at the same time. Such an arrangement is

known as the Hybrid Inheritance. This is arguably the most complex inheritance among all the

types of inheritance in C++. The data members of the base class will be accessed according to

the specified visibility mode.

Syntax

class class_A

{

// class definition

};

class class_B

{

// class definition

};

class class_C: visibility_mode class_A, visibility_mode class_B

{

// class definition

};

class class_D: visibility_mode class_C

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

{

EEE,NRCM Page 114 S.GNANAPRASANNA, Asst Professor

// class definition

};

class class_E: visibility_mode class_C

electronicDevice()

{

// class definition

};

Description

The derived class class_C inherits two base classes that are, class_A and class_B. This is the

structure of Multiple Inheritance. And two subclasses class_D and class_E, further inherit

class_C. This is the structure of Hierarchical Inheritance. The overall structure of Hybrid

Inheritance includes more than one type of inheritance.

Example

The following example illustrates the Hybrid Inheritance in C++:

#include <iostream>

using namespace std;

// base class 1

class electronicDevice

{

public:

// constructor of the base class 1

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 115 Naveen Kumar Arem,Asst Professor

cout << "I am an electronic device.\n\n";

}

};

{};

int

// base class 2

class Computer

{

public:

// constructor of the base class 2

Computer()

{

cout << "I am a computer.\n\n";

}

};

// derived class 1 inheriting base class 1 and base class 2

class Linux_based : public electronicDevice, public Computer

{};

// derived class 2 inheriting derived class 1

class Debian: public Linux_based

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 116 Naveen Kumar Arem,Asst Professor

main()

{

// create an object of the derived class

Syntax:

Debian obj; // constructor of base classes and

// derived class will be called

return 0;

}

Base Class:

In C++ or object-oriented programming, a base class is defined as any existing class from which

other classes can be derived. A base class is sometimes alternately called a parent class or a

superclass. The members and functions of a base class can be acquired by other non-base classes.

The syntax of the base class is the same as any other regular class syntax. The syntax is as

follows:

Signup for Free Mock Test

class base_class

{

//class_members

//class_member_functions

}

Derived class

 A derived class is defined by specifying it relationship with the base class in addition to

its own details.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 117 Naveen Kumar Arem,Asst Professor

Here,

 class is the required keyword,

 derived-class-name is the name given to the derived class,

 base-class-name is the name given to the base class,
 : (colon) indicates that the derived-class-name is derived from the base-class-name,

visibility-mode is optional and, if present, may be either private or public.

 The default visibility-mode is private.

 Visibility mode specifies whether the features of the base class are privately derived or

publicly derived.

Example:

class derived-class-name : visibility-mode base-class-name

{

//members of derived class

}

class Shape

{

protected:

float width, height;

public:

void set_data (float a, float b)

{

width = a;

height = b;

}

};

class Rectangle: public Shape

{

public:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 118 Naveen Kumar Arem,Asst Professor

}

Access to the base class members

float area ()

{

return (width * height);

}

};

class Triangle: public Shape

{

public:

float area ()

{

return (width * height / 2);

}

};

void main ()

{

Rectangle rect;

Triangle tri;

rect.set_data (5,3);

tri.set_data (2,5);

cout << rect.area() << endl;

cout << tri.area() << endl;

getch();

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 119 Naveen Kumar Arem,Asst Professor

The base class members can be accessed by its sub-classes through access specifiers. There are

three types of access specifies. They are public, private and protected.

1. Public

When the base class is publicly inherited, the public members of the base class become the

derived class public members.

Also read :Explain different datatypes in C++

They can be accessed by the objects of the derived class.

Figure: Publicly Inherited Base Class

Syntax

class classname

{

public:

datatype variablename;

returntype functionname();

};

2. Protected

When the base class is derived in protected mode, the ‘protected’ and ‘public’ members of the

base class become the protected members of the derived class.

Also read :Structure of a C++ program

Private and protected members of a class can be accessed by,

(i) A friend function of the class.

http://estudies4you.blogspot.com/2020/06/explain-different-datatypes-in-oops.html
http://estudies4you.blogspot.com/2020/06/structure-of-c-program.html

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 120 Naveen Kumar Arem,Asst Professor

(ii) A member function of the friend class.

(iii) A derived class member function.

Figure: Protected Derivation of the Base Class

Also read :Abstraction, Encapsulation, Inheritance and Polymorphism

Syntax

class classname

{

protected: :

datatype variablename;

returntype functionname();

};

3.Private

When a base class contains members, that are declared as private, they cannot be accessed by the

derived class objects. They can be accessed only by the class in which they are defined.

http://estudies4you.blogspot.com/2020/06/explain-functional-concepts-of-OOPS.html

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 121 Naveen Kumar Arem,Asst Professor

Figure: Privately inherited Base Class

Syntax

Also read :Differences between OOP and procedure oriented programming

class classname

{

private:

datatype variablename;

returntype functionname();

};

Program

#include <iostream>

using namespace std;

class A

{

public: pub()

{

cout << “In Public() \n”;

}

protected: prot()

http://estudies4you.blogspot.com/2020/06/differences-between-oop-and-procedure.html

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 122 Naveen Kumar Arem,Asst Professor

{

cout << “In Protected() \n”;

}

private: priv()

{

cout << “In Pivate() \n”;

}

};

class C : public A

{

public:

void display1()

{

cout<< “In C::display1 call\n”;

pub();

}

void display2()

{

cout << “In C::display2 call\n”;

prot();

}

/*pri(Q is a private member of class A. Therefore it is an illegal access

void display3()

{

cout<<“In C::display3 call\n”;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 123 Naveen Kumar Arem,Asst Professor

priv();

} */

}

main()

{

C obj;

obj.pub();

// obj.prot(); illegal because it is declared as protected in class A

// obj.private(); illegal because pri() isa private member of class A

obj.display1();

obj.display2();

}

Base and Derived class constructor:

When we inherit class into another class then object of base class is initialized first. If a class do

not have any constructor then default constructor will be called. But if we have created any

parameterized constructor then we have to initialize base class constructor from derived class.

We have to call constructor from another constructor. It is also known as constructor chaining.

When we have to call same class constructor from another constructor then we use this keyword.

In addition, when we have to call base class constructor from derived class then we use base

keyword.

Example of Base Class Constructor Calling

In the following example we have created Abc is as a base class and inherit it into Pqr. We have

created parameterized constructor in class Abc so we have to initialize this constructor from

derived class constructor in the following manner:-

public class Abc

{

public int p, q;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 124 Naveen Kumar Arem,Asst Professor

When we create the object of Pqr class then first it will call Pqr class constructor but Pqr class

constructor first initialize the base class constructor then Pqr constructor will be initialized. It is

very important point to note down the base class constructor initialized first.

public Abc(int p1, int p2)

{

p = p1;

q = p2;

}

public int sum(int x, int y)

{

return (x + y);

}

}

//derived class/ child class

public class Pqr : Abc

{

public int a;

public Pqr(int a1,int p1, int p2):base(p1,p2)

{

a = a1;

}

public int sub(int x, int y)

{

return (x - y);

}

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 125 Naveen Kumar Arem,Asst Professor

Destructors:

Destructors in C++ are members functions in a class that delete an object. They are called when

the class object goes out of scope such as when the function ends, the program ends, a delete

variable is called etc.

Destructors are different from normal member functions as they don’t take any argument and

don’t return anything. Also, destructors have the same name as their class and their name is

preceded by a tilde(~).

A program that demonstrates destructors in C++ is given as follows.

Example

#include<iostream>

using namespace std;

class Demo {

private:

int num1, num2;

public:

Demo(int n1, int n2) {

cout<<"Inside Constructor"<<endl;

num1 = n1;

num2 = n2;

}

void display() {

cout<<"num1 = "<< num1 <<endl;

cout<<"num2 = "<< num2 <<endl;

}

~Demo() {

cout<<"Inside Destructor";

}

};

int main() {

Demo obj1(10, 20);

obj1.display();

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 126 Naveen Kumar Arem,Asst Professor

Output

Inside Constructor

num1 = 10

num2 = 20

Inside Destructor

Virtual base class:

Virtual classes are primarily used during multiple inheritance. To avoid, multiple instances of

the same class being taken to the same class which later causes ambiguity, virtual classes are

used.

Example

#include <iostream>

using namespace std;

class A {

public:

int a;

A(){

a = 10;

}

};

class B : public virtual A {

};

class C : public virtual A {

};

class D : public B, public C {

};

int main(){

//creating class D object

D object;

cout << "a = " << object.a << endl;

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 127 Naveen Kumar Arem,Asst Professor

Output

a = 10

UNIT - IV

I/O using C functions:

When we say Input, it means to feed some data into a program. An input can be given in the

form of a file or from the command line. C programming provides a set of built-in functions to
read the given input and feed it to the program as per requirement.

When we say Output, it means to display some data on screen, printer, or in any file. C

programming provides a set of built-in functions to output the data on the computer screen as

well as to save it in text or binary files.

The Standard Files

C programming treats all the devices as files. So devices such as the display are addressed in the
same way as files and the following three files are automatically opened when a program

executes to provide access to the keyboard and screen.

Standard File File Pointer Device

Standard input stdin Keyboard

Standard output stdout Screen

Standard error stderr Your screen

The file pointers are the means to access the file for reading and writing purpose. This section

explains how to read values from the screen and how to print the result on the screen.

The getchar() and putchar() Functions

The int getchar(void) function reads the next available character from the screen and returns it

as an integer. This function reads only single character at a time. You can use this method in the

loop in case you want to read more than one character from the screen.

The int putchar(int c) function puts the passed character on the screen and returns the same

character. This function puts only single character at a time. You can use this method in the loop

in case you want to display more than one character on the screen. Check the following example

−

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 128 Naveen Kumar Arem,Asst Professor

#include <stdio.h>
int main() {

int c;

printf("Enter a value :");

c = getchar();

printf("\nYou entered: ");

putchar(c);

return 0;

}

When the above code is compiled and executed, it waits for you to input some text. When you

enter a text and press enter, then the program proceeds and reads only a single character and
displays it as follows −

$./a.out

Enter a value : this is test

You entered: t

The gets() and puts() Functions

The char *gets(char *s) function reads a line from stdin into the buffer pointed to by s until

either a terminating newline or EOF (End of File).

The int puts(const char *s) function writes the string 's' and 'a' trailing newline to stdout.

NOTE: Though it has been deprecated to use gets() function, Instead of using gets, you want to

use fgets().

#include <stdio.h>

int main() {

char str[100];

printf("Enter a value :");

gets(str);

printf("\nYou entered: ");

puts(str);

return 0;

}

When the above code is compiled and executed, it waits for you to input some text. When you

enter a text and press enter, then the program proceeds and reads the complete line till end, and

displays it as follows −

$./a.out

https://www.tutorialspoint.com/c_standard_library/c_function_fgets.htm

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 129 Naveen Kumar Arem,Asst Professor

Enter a value : this is test

You entered: this is test

The scanf() and printf() Functions

The int scanf(const char *format, ...) function reads the input from the standard input
stream stdin and scans that input according to the format provided.

The int printf(const char *format, ...) function writes the output to the standard output
stream stdout and produces the output according to the format provided.

The format can be a simple constant string, but you can specify %s, %d, %c, %f, etc., to print or

read strings, integer, character or float respectively. There are many other formatting options

available which can be used based on requirements. Let us now proceed with a simple example

to understand the concepts better −

#include <stdio.h>

int main() {

char str[100];

int i;

printf("Enter a value :");
scanf("%s %d", str, &i);

printf("\nYou entered: %s %d ", str, i);

return 0;

}

When the above code is compiled and executed, it waits for you to input some text. When you

enter a text and press enter, then program proceeds and reads the input and displays it as follows

−

$./a.out

Enter a value : seven 7

You entered: seven 7

Here, it should be noted that scanf() expects input in the same format as you provided %s and

%d, which means you have to provide valid inputs like "string integer". If you provide "string

string" or "integer integer", then it will be assumed as wrong input. Secondly, while reading a

string, scanf() stops reading as soon as it encounters a space, so "this is test" are three strings for

scanf().

Stream classes hierarchy:

In C++ stream refers to the stream of characters that are transferred between the program thread

and i/o.

Stream classes in C++ are used to input and output operations on files and io devices. These

classes have specific features and to handle input and output of the program.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 130 Naveen Kumar Arem,Asst Professor

The iostream.h library holds all the stream classes in the C++ programming language.

Now, let’s learn about the classes of the iostream library.

ios class − This class is the base class for all stream classes. The streams can be input or output

streams. This class defines members that are independent of how the templates of the class are

defined.

istream Class − The istream class handles the input stream in c++ programming language.

These input stream objects are used to read and interpret the input as a sequence of characters.

The cin handles the input.

ostream class − The ostream class handles the output stream in c++ programming language.

These output stream objects are used to write data as a sequence of characters on the screen.

cout and puts handle the out streams in c++ programming language.

Example

OUT STREAM

#include <iostream>

using namespace std;

int main(){

cout<<"This output is printed on screen";

}

Output

This output is printed on screen

PUTS

#include <iostream>

using namespace std;

int main(){

puts("This output is printed using puts");

}

Output

This output is printed using puts

IN STREAM

CIN

#include <iostream>

using namespace std;

int main(){

int no;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 131 Naveen Kumar Arem,Asst Professor

cout<<"Enter a number ";

cin>>no;

cout<<"Number entered using cin is "<

Output

Enter a number 3453

Number entered using cin is 3453

gets

#include <iostream>

using namespace std;

int main(){

char ch[10];

puts("Enter a character array");

gets(ch);

puts("The character array entered using gets is : ");

puts(ch);

}

Output

Enter a character array

thdgf

The character array entered using gets is :

Thdgf

Stream I/O:

The C++ standard libraries provide an extensive set of input/output capabilities which we will

see in subsequent chapters. This chapter will discuss very basic and most common I/O operations

required for C++ programming.

C++ I/O occurs in streams, which are sequences of bytes. If bytes flow from a device like a

keyboard, a disk drive, or a network connection etc. to main memory, this is called input

operation and if bytes flow from main memory to a device like a display screen, a printer, a disk

drive, or a network connection, etc., this is called output operation.

I/O Library Header Files

There are following header files important to C++ programs −

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 132 Naveen Kumar Arem,Asst Professor

Sr.No Header File & Function and Description

1
<iostream>

This file defines the cin, cout, cerr and clog objects, which correspond to the

standard input stream, the standard output stream, the un-buffered standard error

stream and the buffered standard error stream, respectively.

2

<iomanip>

This file declares services useful for performing formatted I/O with so-called

parameterized stream manipulators, such as setw and setprecision.

3
<fstream>

This file declares services for user-controlled file processing. We will discuss

about it in detail in File and Stream related chapter.

The Standard Output Stream (cout)

The predefined object cout is an instance of ostream class. The cout object is said to be

"connected to" the standard output device, which usually is the display screen. The cout is used

in conjunction with the stream insertion operator, which is written as << which are two less than

signs as shown in the following example.

#include <iostream>

using namespace std;

int main() {

char str[] = "Hello C++";

cout << "Value of str is : " << str << endl;

}

When the above code is compiled and executed, it produces the following result −

Value of str is : Hello C++

The C++ compiler also determines the data type of variable to be output and selects the
appropriate stream insertion operator to display the value. The << operator is overloaded to

output data items of built-in types integer, float, double, strings and pointer values.

The insertion operator << may be used more than once in a single statement as shown above

and endl is used to add a new-line at the end of the line.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 133 Naveen Kumar Arem,Asst Professor

The Standard Input Stream (cin)

The predefined object cin is an instance of istream class. The cin object is said to be attached to

the standard input device, which usually is the keyboard. The cin is used in conjunction with the

stream extraction operator, which is written as >> which are two greater than signs as shown in

the following example.

#include <iostream>

using namespace std;

int main() {

char name[50];

cout << "Please enter your name: ";
cin >> name;

cout << "Your name is: " << name << endl;

}

When the above code is compiled and executed, it will prompt you to enter a name. You enter a

value and then hit enter to see the following result −

Please enter your name: cplusplus

Your name is: cplusplus

The C++ compiler also determines the data type of the entered value and selects the appropriate

stream extraction operator to extract the value and store it in the given variables.

The stream extraction operator >> may be used more than once in a single statement. To request

more than one datum you can use the following −

cin >> name >> age;

This will be equivalent to the following two statements −

cin >> name;

cin >> age;

The Standard Error Stream (cerr)

The predefined object cerr is an instance of ostream class. The cerr object is said to be attached

to the standard error device, which is also a display screen but the object cerr is un-buffered and

each stream insertion to cerr causes its output to appear immediately.

The cerr is also used in conjunction with the stream insertion operator as shown in the following

example.

#include <iostream>

using namespace std;

int main() {

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 134 Naveen Kumar Arem,Asst Professor

char str[] = "Unable to read. ..";

cerr << "Error message : " << str << endl;

}

When the above code is compiled and executed, it produces the following result −

Error message : Unable to read....

The Standard Log Stream (clog)

The predefined object clog is an instance of ostream class. The clog object is said to be attached

to the standard error device, which is also a display screen but the object clog is buffered. This

means that each insertion to clog could cause its output to be held in a buffer until the buffer is

filled or until the buffer is flushed.

The clog is also used in conjunction with the stream insertion operator as shown in the following

example.

#include <iostream>

using namespace std;

int main() {

char str[] = "Unable to read. .. ";

clog << "Error message : " << str << endl;

}

When the above code is compiled and executed, it produces the following result −

Error message : Unable to read....

You would not be able to see any difference in cout, cerr and clog with these small examples, but

while writing and executing big programs the difference becomes obvious. So it is good practice

to display error messages using cerr stream and while displaying other log messages then clog

should be used.

File Streams:

File streams in C++ are basically the libraries that are used in the due course of programming.

The programmers generally use the iostream standard library in the C++ programming as it

provides the cin and cout methods that are used for reading from the input and writing to the

output respectively.

In order to read and write from a file, the programmers are generally using the standard C++

library that is known as the fstream.

Here is the list of the data types that are defined in the fstream library:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 135 Naveen Kumar Arem,Asst Professor

Data

Type

Description

fstream This data types is generally used to create files, write information to files, and read

information from files.

ifstream This data types is generally used to read information from files.

ofstream This data types is generally used to create files and write information to the files.

Example 1(Writing content to a file)

Output :This program create a test.txt write the info inside the file

Welcome to the world of C++ Tutorial.

Hello user.

String streams:

Here we will see the string stream in C++. The string stream associates a string object with a

string. Using this we can read from string as if it were a stream like cin.

The Stringstream has different methods. These are like below −

clear(): Used to clear the stream

#include <iostream>

#include <fstream>

using namespace std;

int main ()

{

ofstream filestream("test.txt");

if (filestream.is_open())

{

filestream << "Welcome to the world of C++ Tutorial.\n";

filestream << "Hello user.\n";

filestream.close();

}

else

{

cout <<"No Such File created.";

}

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 136 Naveen Kumar Arem,Asst Professor

str(): To get and set the string object whose content is present in stream

operator << : This will add one string into the stringstream

operator >> : This is used to read from stringstream object.

Let us see two examples of string streams. In the first program we will divide the words into

separate strings.

Example

#include <iostream>

#include <vector>

#include <string>

#include <sstream>

using namespace std;

int main() {

string str("Hello from the dark side");

string tmp; // A string to store the word on each iteration.

stringstream str_strm(str);

vector<string> words; // Create vector to hold our words

while (str_strm >> tmp) {

// Provide proper checks here for tmp like if empty

// Also strip down symbols like !, ., ?, etc.

// Finally push it.

words.push_back(tmp);

}

for(int i = 0; i<words.size(); i++)

cout << words[i] << endl;

}

Output

Hello

from

the

dark

side

Here we will convert Decimal to Hexadecimal using string stream.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 137 Naveen Kumar Arem,Asst Professor

Example

#include<iostream>

#include<sstream>

using namespace std;

main(){

int decimal = 61;

stringstream my_ss;

my_ss << hex << decimal;

string res = my_ss.str();

cout << "The hexadecimal value of 61 is: " << res;

}

Output

The hexadecimal value of 61 is: 3d

Example 1(Writing content to a file)

Output :This program create a test.txt write the info inside the file

Welcome to the world of C++ Tutorial.

Hello user.

#include <iostream>

#include <fstream>

using namespace std;

int main ()

{

ofstream filestream("test.txt");

if (filestream.is_open())

{

filestream << "Welcome to the world of C++ Tutorial.\n";

filestream << "Hello user.\n";

filestream.close();

}

else

{

cout <<"No Such File created.";

}

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 138 Naveen Kumar Arem,Asst Professor

Example 2(Reading Content from a file)

Operators Overloading in C++

You can redefine or overload most of the built-in operators available in C++. Thus, a

programmer can use operators with user-defined types as well.

Overloaded operators are functions with special names: the keyword "operator" followed by the

symbol for the operator being defined. Like any other function, an overloaded operator has a

return type and a parameter list.

Box operator+(const Box&);

declares the addition operator that can be used to add two Box objects and returns final Box

object. Most overloaded operators may be defined as ordinary non-member functions or as class

member functions. In case we define above function as non-member function of a class then we

would have to pass two arguments for each operand as follows −

Box operator+(const Box&, const Box&);

Following is the example to show the concept of operator over loading using a member function.

Here an object is passed as an argument whose properties will be accessed using this object, the

object which will call this operator can be accessed using this operator as explained below –

#include <iostream>

#include <fstream>

using namespace std;

int main ()

{

string srg;
ifstream filestream("test.txt");

if (filestream.is_open())

{

while (getline (filestream,srg))

{

cout << srg <<endl;

}

filestream.close();

}

else

{

cout << "No such file found."<<endl;

}

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 139 Naveen Kumar Arem,Asst Professor

#include <iostream>

using namespace std;

class Box {

public:

double getVolume(void) {

return length * breadth * height;

}

void setLength(double len) {

length = len;

}
void setBreadth(double bre) {

breadth = bre;

}
void setHeight(double hei) {

height = hei;

}

// Overload + operator to add two Box objects.

Box operator+(const Box& b) {

Box box;
box.length = this->length + b.length;

box.breadth = this->breadth + b.breadth;

box.height = this->height + b.height;

return box;

}

private:
double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

};

// Main function for the program

int main() {

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

Box Box3; // Declare Box3 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specification

Box1.setLength(6.0);

Box1.setBreadth(7.0);

Box1.setHeight(5.0);

// box 2 specification

Box2.setLength(12.0);

Box2.setBreadth(13.0);

Box2.setHeight(10.0);

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 140 Naveen Kumar Arem,Asst Professor

// volume of box 1

volume = Box1.getVolume();

cout << "Volume of Box1 : " << volume <<endl;

// volume of box 2

volume = Box2.getVolume();

cout << "Volume of Box2 : " << volume <<endl;

// Add two object as follows:

Box3 = Box1 + Box2;

// volume of box 3

volume = Box3.getVolume();

cout << "Volume of Box3 : " << volume <<endl;

return 0;

}

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Volume of Box2 : 1560

Volume of Box3 : 5400

Overloadable/Non-overloadableOperators

Following is the list of operators which can be overloaded −

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* New new [] delete delete []

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 141 Naveen Kumar Arem,Asst Professor

Following is the list of operators, which can not be overloaded –

Error handling during file operations:

Sometimes during file operations, errors may also creep in. For example, a file being opened for

reading might not exist. Or a file name used for a new file may already exist. Or an attempt could

be made to read past the end-of-file. Or such as invalid operation may be performed. There might

not be enough space in the disk for storing data.

To check for such errors and to ensure smooth processing, C++ file streams inherit 'stream-state'

members from the ios class that store the information on the status of a file that is being currently

used. The current state of the I/O system is held in an integer, in which the following flags are

encoded :

Name Meaning

eofbit 1 when end-of-file is encountered, 0 otherwise.

failbit 1 when a non-fatal I/O error has occurred, 0 otherwise

badbit 1 when a fatal I/O error has occurred, 0 otherwise

goodbit 0 value

C++ Error Handling Functions

There are several error handling functions supported by class ios that help you read and process

the status recorded in a file stream.

Following table lists these error handling functions and their meaning :

Function Meaning

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 142 Naveen Kumar Arem,Asst Professor

int bad()

Returns a non-zero value if an invalid operation is attempted or any unrecoverable error has occurred.

However, if it is zero (false value), it may be possible to recover from any other error reported and

continue operations.

int eof()
Returns non-zero (true value) if end-of-file is encountered while reading; otherwise returns zero (false

value).

int fail() Returns non-zero (true) when an input or output operation has failed.

int

good()

Returns non-zero (true) if no error has occurred. This means, all the above functions are false. For

example, if fin.good() is true, everything is okay with the stream named as fin and we can proceed to

perform I/O operations. When it returns zero, no further operations can be carried out.

clear() Resets the error state so that further operations can be attempted.

The above functions can be summarized as eof() returns true if eofbit is set; bad() returns true if

badbit is set. The fail() function returns true if failbit is set; the good() returns true there are no

errors. Otherwise, they return false.

These functions may be used in the appropriate places in a program to locate the status of a file

stream and thereby take the necessary corrective measures. For example :

:
ifstream fin;

fin.open("master", ios::in);

while(!fin.fail())

{

: // process the file

}

if(fin.eof())

{

: // terminate the program

}

else if(fin.bad())

{

: // report fatal error

}

else

{

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 143 Naveen Kumar Arem,Asst Professor

fin.clear(); // clear error-state flags

:

}

:

C++ Error Handling Example

Here is an example program, illustrating error handling during file operations in a C++ program:

/* C++ Error Handling During File Operations

* This program demonstrates the concept of

* handling the errors during file operations

* in a C++ program */

#include<iostream.h>

#include<fstream.h>

#include<process.h>

#include<conio.h>

void main()

{

clrscr();

char fname[20];

cout<<"Enter file name: ";

cin.getline(fname, 20);

ifstream fin(fname, ios::in);

if(!fin)

{

cout<<"Error in opening the file\n";

cout<<"Press a key to exit...\n";

getch();

exit(1);

}
int val1, val2;

int res=0;

char op;

fin>>val1>>val2>>op;

switch(op)

{

case '+':

res = val1 + val2;
cout<<"\n"<<val1<<" + "<<val2<<" = "<<res;

break;

case '-':

res = val1 - val2;
cout<<"\n"<<val1<<" - "<<val2<<" = "<<res;
break;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 144 Naveen Kumar Arem,Asst Professor

case '*':

res = val1 * val2;

cout<<"\n"<<val1<<" * "<<val2<<" = "<<res;

break;

case '/':

if(val2==0)

{

cout<<"\nDivide by Zero Error..!!\n";

cout<<"\nPress any key to exit...\n";

getch();

exit(2);

}

res = val1 / val2;

cout<<"\n"<<val1<<" / "<<val2<<" = "<<res;

break;

}

fin.close();

cout<<"\n\nPress any key to exit...\n";
getch();

}

Let's suppose we have four files with the following names and data, shown in this table:

File Name Data

myfile1.txt

10

5

/

myfile2.txt

10

0

/

myfile3.txt

10

5

+

myfile4.txt

10

0

+

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 145 Naveen Kumar Arem,Asst Professor

Formatted I/O: The iomanip.h and iostream.h header files are used to perform the formatted
IO operations in C++.

The C++ programming language provides the several built-in functions to display the output in

formatted form. These built-in functions are available in the header file iomanip.h and ios class

of header file iostream.h.

In C++, there are two ways to perform the formatted IO operations.

 Using the member functions of ios class.

 Using the special functions called manipulators defined in iomanip.h.

Formatted IO using ios class memebers

The ios class contains several member functions that are used to perform formmated IO

operations.

The ios class also contains few format flags used to format the output. It has format flags

like showpos, showbase, oct, hex, etc. The format flags are used by the function setf().

The following table provides the details of the functions of ios class used to perform formatted

IO in C++.

Function Description

width(int) Used to set the width in number of character spaces for the immediate output data.

fill(char) Used to fill the blank spaces in output with given character.

precision(int) Used to set the number of the decimal point to a float value.

setf(format flags) Used to set various flags for formatting output like showbase, showpos, oct, hex, etc.

unsetf(format flags) Used to clear the format flag setting.

All the above functions are called using the built-in object cout.

Lets look at the following code to illustrate the formatted IO operations using member functions

of ios class.

Example - Code to illustrate the formatted IO using ios class

#include <iostream>

#include <fstream>

using namespace std;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 146 Naveen Kumar Arem,Asst Professor

int main()

{

cout << "Example for formatted IO" << endl;

cout << "Default: " << endl;

cout << 123 << endl;

cout << "width(5): " << endl;

cout.width(5);

cout << 123 << endl;

cout << "width(5) and fill('*'): " << endl;

cout.width(5);

cout.fill('*');

cout << 123 << endl;

cout.precision(5);

cout << "precision(5) ---> " << 123.4567890 << endl;

cout << "precision(5) ---> " << 9.876543210 << endl;

cout << "setf(showpos): " << endl;

cout.setf(ios::showpos);

cout << 123 << endl;

cout << "unsetf(showpos): " << endl;

cout.unsetf(ios::showpos);

cout << 123 << endl;

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 147 Naveen Kumar Arem,Asst Professor

Formatted IO using manipulators

The iomanip.h header file contains several special functions that are used to perform formmated

IO operations.

The following table provides the details of the special manipulator functions used to perform

formatted IO in C++.

Function Description

setw(int) Used to set the width in number of characters for the immediate output data.

setfill(char) Used to fill the blank spaces in output with given character.

setprecision(int) Used to set the number of digits of precision.

setbase(int) Used to set the number base.

setiosflags(format flags) Used to set the format flag.

resetiosflags(format flags) Used to clear the format flag.

The iomanip.h also contains the following format flags using in formatted IO in C++.

Flag Description

endl Used to move the cursor position to a newline.

Output

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 148 Naveen Kumar Arem,Asst Professor

Flag Description

ends Used to print a blank space (null character).

Dec Used to set the decimal flag.

Oct Used to set the octal flag.

Hex Used to set the hexadecimal flag.

Left Used to set the left alignment flag.

right Used to set the right alignment flag.

showbase Used to set the showbase flag.

noshowbase Used to set the noshowbase flag.

showpos Used to set the showpos flag.

noshowpos Used to set the noshowpos flag.

showpoit Used to set the showpoit flag.

noshowpoint Used to set the noshowpoint flag.

Lets look at the following code to illustrate the formatted IO operations using manipulators.

Example - Code to illustrate the formatted IO using manipulators

#include <iostream>

#include <fstream>

using namespace std;

void line() {

cout << " " << endl;

}

int main()

{

cout << "Example for formatted IO" << endl;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

EEE,NRCM Page 149 Naveen Kumar Arem,Asst Professor

line();

cout << "setw(10): " << endl;

cout << setw(10) << 99 << endl;

line();

cout << "setw(10) and setfill('*'): " << endl;

cout << setw(10) << setfill('*') << 99 << endl;

line();

cout << "setprecision(5): " << endl;

cout << setprecision(5) << 123.4567890 << endl;

line();

cout << "showpos: " << endl;

cout << showpos << 999 << endl;

line();

cout << "hex: " << endl;

cout << hex << 100 << endl;

line();

cout << "hex and showbase: " << endl;

cout << showbase << hex << 100 << endl;

line();

return 0;

}

	 Monolithic programming paradigm
	 Procedural-oriented programming paradigm
	Monolithic Programming Paradigm
	Object-oriented Programming Paradigm
	Object
	Class
	Base and Derived Classes
	Access Control and Inheritance
	Type of Inheritance
	Multiple Inheritance
	Abstraction:
	Data Encapsulation Example
	Advantage of OOPs over Procedure-oriented programming language:
	Primitive Built-in Types
	Variable Declaration:
	Variable Declaration in C++
	Lvalues and Rvalues
	Declaration of Expressions in C++
	Type Conversion:
	Implicit Conversion (Type Conversion)
	Explicit Conversion (Type Casting)
	Example
	average = (float) totalMarks / maxMarks * 100 ;
	Using Pointers in C++
	Declaring Arrays
	Initializing Arrays
	Arrays and Pointers:
	Function Declarations
	Calling a Function
	Function Arguments
	Default Values for Parameters
	Recursion Example
	New and delete Operators
	new data-type;
	Dynamic Memory Allocation for Arrays
	Dynamic Memory Allocation for Objects
	Unit-2
	C++ is an object-oriented programming language.
	Create a Class
	Create an Object
	Friends to a class
	Friend Keyword in C++
	Use of Friend Class in C++
	Syntax of Implementing Friend Class in C++
	Examples of Friend Class in C++
	Output:
	Implementing Friend Function in C++ Through a Method of Another Class
	Implementing Friend Function in C++ Through a Global Function
	Static class members
	Static Function Members
	Output: (1)
	Constant member functions
	Constructors and Destructors:
	The declaration and definition of constructor is as follows
	Do nothing Constructor
	Default Constructor
	Parameterized Constructor
	What are Destructors?
	1. Public
	Syntax
	2. Protected
	3. Private
	Syntax (1)
	Program
	Constructor and Destructor in Derived class in C++
	Points to Remember:-
	For Example:- Destructor Example
	Benefits of Data Abstraction
	Data Abstraction Example
	Abstract Data Types in C++
	public:

	Member Accessibility
	public:
	Implicit

	Information hiding:
	Output:
	Data Abstraction
	Example:
	Output: (1)

	Defining a class hierarchy:
	Use of Hierarchical Inheritance in C++
	Syntax to Implement Hierarchical Inheritance in C++

	Different forms of Inheritance
	Types of inheritance in C++

	 Single Inheritance
	 Multiple Inheritance
	Description

	 Hierarchical Inheritance
	 Hybrid Inheritance

	Access to the base class members
	1. Public
	Syntax
	2. Protected
	Syntax (1)
	Program

	Base and Derived class constructor:
	Example of Base Class Constructor Calling

	Destructors:
	Virtual base class:
	I/O using C functions:
	You entered: t

	Stream classes hierarchy:
	Output
	PUTS
	Output (1)
	CIN
	Output (2)
	gets
	Output (3)

	Stream I/O:
	The Standard Output Stream (cout)
	The Standard Input Stream (cin)

	File Streams:
	Here is the list of the data types that are defined in the fstream library:

	String streams:
	Operators Overloading in C++
	Overloadable/Non-overloadableOperators
	Error handling during file operations:
	C++ Error Handling Functions
	C++ Error Handling Example
	Formatted IO using ios class memebers
	Formatted IO using manipulators

